/* * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "soc/soc_caps.h" #include "hal/systimer_hal.h" #include "hal/systimer_ll.h" #include "hal/systimer_types.h" #include "hal/assert.h" void systimer_hal_init(systimer_hal_context_t *hal) { hal->dev = &SYSTIMER; systimer_ll_enable_clock(hal->dev, true); #if SOC_SYSTIMER_SUPPORT_ETM systimer_ll_enable_etm(&SYSTIMER, true); #endif } void systimer_hal_deinit(systimer_hal_context_t *hal) { #if SOC_SYSTIMER_SUPPORT_ETM systimer_ll_enable_etm(&SYSTIMER, false); #endif systimer_ll_enable_clock(hal->dev, false); hal->dev = NULL; } void systimer_hal_set_clock_source(systimer_hal_context_t *hal, systimer_clock_source_t clk_src) { (void)hal; systimer_ll_set_clock_source(clk_src); } systimer_clock_source_t systimer_hal_get_clock_source(systimer_hal_context_t *hal) { (void)hal; return systimer_ll_get_clock_source(); } void systimer_hal_set_tick_rate_ops(systimer_hal_context_t *hal, systimer_hal_tick_rate_ops_t *ops) { hal->ticks_to_us = ops->ticks_to_us; hal->us_to_ticks = ops->us_to_ticks; } uint64_t systimer_hal_get_counter_value(systimer_hal_context_t *hal, uint32_t counter_id) { uint32_t lo, lo_start, hi; /* Set the "update" bit and wait for acknowledgment */ systimer_ll_counter_snapshot(hal->dev, counter_id); while (!systimer_ll_is_counter_value_valid(hal->dev, counter_id)); /* Read LO, HI, then LO again, check that LO returns the same value. * This accounts for the case when an interrupt may happen between reading * HI and LO values, and this function may get called from the ISR. * In this case, the repeated read will return consistent values. */ lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id); do { lo = lo_start; hi = systimer_ll_get_counter_value_high(hal->dev, counter_id); lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id); } while (lo_start != lo); systimer_counter_value_t result = { .lo = lo, .hi = hi }; return result.val; } uint64_t systimer_hal_get_time(systimer_hal_context_t *hal, uint32_t counter_id) { return hal->ticks_to_us(systimer_hal_get_counter_value(hal, counter_id)); } #if SOC_SYSTIMER_ALARM_MISS_COMPENSATE void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t target) { systimer_counter_value_t alarm = { .val = hal->us_to_ticks(target), }; systimer_ll_enable_alarm(hal->dev, alarm_id, false); systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val); systimer_ll_apply_alarm_value(hal->dev, alarm_id); systimer_ll_enable_alarm(hal->dev, alarm_id, true); } #else // SOC_SYSTIMER_ALARM_MISS_COMPENSATE void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t timestamp) { int64_t offset = hal->us_to_ticks(1) * 2; uint64_t now_time = systimer_hal_get_counter_value(hal, 0); systimer_counter_value_t alarm = { .val = MAX(hal->us_to_ticks(timestamp), now_time + offset) }; do { systimer_ll_enable_alarm(hal->dev, alarm_id, false); systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val); systimer_ll_enable_alarm(hal->dev, alarm_id, true); now_time = systimer_hal_get_counter_value(hal, 0); int64_t delta = (int64_t)alarm.val - (int64_t)now_time; if (delta <= 0 && !systimer_ll_is_alarm_int_fired(hal->dev, alarm_id)) { // new alarm is less than the counter and the interrupt flag is not set offset += -1 * delta + hal->us_to_ticks(1) * 2; alarm.val = now_time + offset; } else { // finish if either (alarm > counter) or the interrupt flag is already set. break; } } while (1); } #endif // SOC_SYSTIMER_ALARM_MISS_COMPENSATE void systimer_hal_set_alarm_period(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t period) { systimer_ll_enable_alarm(hal->dev, alarm_id, false); systimer_ll_set_alarm_period(hal->dev, alarm_id, hal->us_to_ticks(period)); systimer_ll_apply_alarm_value(hal->dev, alarm_id); systimer_ll_enable_alarm(hal->dev, alarm_id, true); } uint64_t systimer_hal_get_alarm_value(systimer_hal_context_t *hal, uint32_t alarm_id) { return systimer_ll_get_alarm_target(hal->dev, alarm_id); } void systimer_hal_enable_alarm_int(systimer_hal_context_t *hal, uint32_t alarm_id) { systimer_ll_enable_alarm_int(hal->dev, alarm_id, true); } void systimer_hal_counter_value_advance(systimer_hal_context_t *hal, uint32_t counter_id, int64_t time_us) { systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(hal, counter_id) + hal->us_to_ticks(time_us), }; systimer_ll_set_counter_value(hal->dev, counter_id, new_count.val); systimer_ll_apply_counter_value(hal->dev, counter_id); } void systimer_hal_enable_counter(systimer_hal_context_t *hal, uint32_t counter_id) { systimer_ll_enable_counter(hal->dev, counter_id, true); } void systimer_hal_select_alarm_mode(systimer_hal_context_t *hal, uint32_t alarm_id, systimer_alarm_mode_t mode) { switch (mode) { case SYSTIMER_ALARM_MODE_ONESHOT: systimer_ll_enable_alarm_oneshot(hal->dev, alarm_id); break; case SYSTIMER_ALARM_MODE_PERIOD: systimer_ll_enable_alarm_period(hal->dev, alarm_id); break; default: break; } } void systimer_hal_connect_alarm_counter(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t counter_id) { systimer_ll_connect_alarm_counter(hal->dev, alarm_id, counter_id); } void systimer_hal_counter_can_stall_by_cpu(systimer_hal_context_t *hal, uint32_t counter_id, uint32_t cpu_id, bool can) { systimer_ll_counter_can_stall_by_cpu(hal->dev, counter_id, cpu_id, can); } #if !SOC_SYSTIMER_FIXED_DIVIDER void systimer_hal_set_steps_per_tick(systimer_hal_context_t *hal, int clock_source, uint32_t steps) { /* Configure the counter: * - increment by 1 when running from PLL (80 ticks per microsecond), * - increment by 2 when running from XTAL (40 ticks per microsecond). * Note that if the APB frequency is derived from XTAL with divider != 1, * XTAL_STEP needs to be adjusted accordingly. For example, if * the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8. * This is handled in systimer_hal_on_apb_freq_update function. */ switch (clock_source) { case 0: systimer_ll_set_step_for_xtal(hal->dev, steps); break; case 1: systimer_ll_set_step_for_pll(hal->dev, steps); default: break; } } void systimer_hal_on_apb_freq_update(systimer_hal_context_t *hal, uint32_t apb_ticks_per_us) { /* If this function was called when switching APB clock to PLL, don't need * do anything: the SYSTIMER_TIMER_PLL_STEP is already correct. * If this was called when switching APB clock to XTAL, need to adjust * XTAL_STEP value accordingly. */ if (apb_ticks_per_us != hal->us_to_ticks(1)) { HAL_ASSERT((hal->us_to_ticks(1) % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)"); systimer_ll_set_step_for_xtal(hal->dev, hal->us_to_ticks(1) / apb_ticks_per_us); } } #endif // !SOC_SYSTIMER_FIXED_DIVIDER