/* * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_pm.h" #include "esp_check.h" #include "esp_heap_caps.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "freertos/ringbuf.h" #include "esp_private/periph_ctrl.h" #include "esp_private/adc_private.h" #include "esp_private/adc_share_hw_ctrl.h" #include "esp_private/sar_periph_ctrl.h" #include "esp_clk_tree.h" #include "driver/gpio.h" #include "esp_adc/adc_continuous.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/dma_types.h" #include "esp_memory_utils.h" #include "adc_continuous_internal.h" //For DMA #if SOC_GDMA_SUPPORTED #include "esp_private/gdma.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "hal/spi_types.h" #include "esp_private/spi_common_internal.h" #elif CONFIG_IDF_TARGET_ESP32 #include "hal/i2s_types.h" #include "driver/i2s_types.h" #include "soc/i2s_periph.h" #include "esp_private/i2s_platform.h" #endif static const char *ADC_TAG = "adc_continuous"; #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) #define INTERNAL_BUF_NUM 5 /*--------------------------------------------------------------- ADC Continuous Read Mode (via DMA) ---------------------------------------------------------------*/ //Function to address transaction static bool s_adc_dma_intr(adc_continuous_ctx_t *adc_digi_ctx); #if SOC_GDMA_SUPPORTED static bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data); #else static void adc_dma_intr_handler(void *arg); #endif static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel) { assert(adc_unit <= SOC_ADC_PERIPH_NUM); uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1; return adc_channel_io_map[adc_n][adc_channel]; } static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; } gpio_mask |= BIT64(io); } channel_mask = channel_mask >> 1; n++; } gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }; ret = gpio_config(&cfg); return ret; } esp_err_t adc_continuous_new_handle(const adc_continuous_handle_cfg_t *hdl_config, adc_continuous_handle_t *ret_handle) { esp_err_t ret = ESP_OK; ESP_RETURN_ON_FALSE((hdl_config->conv_frame_size % SOC_ADC_DIGI_DATA_BYTES_PER_CONV == 0), ESP_ERR_INVALID_ARG, ADC_TAG, "conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV`"); adc_continuous_ctx_t *adc_ctx = heap_caps_calloc(1, sizeof(adc_continuous_ctx_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (adc_ctx == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } //ringbuffer storage/struct buffer adc_ctx->ringbuf_storage = heap_caps_calloc(1, hdl_config->max_store_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); adc_ctx->ringbuf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (!adc_ctx->ringbuf_storage || !adc_ctx->ringbuf_struct) { ret = ESP_ERR_NO_MEM; goto cleanup; } //ringbuffer adc_ctx->ringbuf_hdl = xRingbufferCreateStatic(hdl_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF, adc_ctx->ringbuf_storage, adc_ctx->ringbuf_struct); if (!adc_ctx->ringbuf_hdl) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc internal buffer used by DMA adc_ctx->rx_dma_buf = heap_caps_calloc(1, hdl_config->conv_frame_size * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA); if (!adc_ctx->rx_dma_buf) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc dma descriptor uint32_t dma_desc_num_per_frame = (hdl_config->conv_frame_size + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; uint32_t dma_desc_max_num = dma_desc_num_per_frame * INTERNAL_BUF_NUM; adc_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * dma_desc_max_num, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA); if (!adc_ctx->hal.rx_desc) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc pattern table adc_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t)); if (!adc_ctx->hal_digi_ctrlr_cfg.adc_pattern) { ret = ESP_ERR_NO_MEM; goto cleanup; } #if CONFIG_PM_ENABLE ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &adc_ctx->pm_lock); if (ret != ESP_OK) { goto cleanup; } #endif //CONFIG_PM_ENABLE #if SOC_GDMA_SUPPORTED //alloc rx gdma channel gdma_channel_alloc_config_t rx_alloc_config = { .direction = GDMA_CHANNEL_DIRECTION_RX, }; ret = gdma_new_channel(&rx_alloc_config, &adc_ctx->rx_dma_channel); if (ret != ESP_OK) { goto cleanup; } gdma_connect(adc_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0)); gdma_strategy_config_t strategy_config = { .auto_update_desc = true, .owner_check = true }; gdma_apply_strategy(adc_ctx->rx_dma_channel, &strategy_config); gdma_rx_event_callbacks_t cbs = { .on_recv_eof = adc_dma_in_suc_eof_callback }; gdma_register_rx_event_callbacks(adc_ctx->rx_dma_channel, &cbs, adc_ctx); int dma_chan; gdma_get_channel_id(adc_ctx->rx_dma_channel, &dma_chan); #elif CONFIG_IDF_TARGET_ESP32S2 //ADC utilises SPI3 DMA on ESP32S2 bool spi_success = false; uint32_t dma_chan = 0; spi_success = spicommon_periph_claim(SPI3_HOST, "adc"); ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &dma_chan, &dma_chan); if (ret == ESP_OK) { adc_ctx->spi_host = SPI3_HOST; } if (!spi_success || (adc_ctx->spi_host != SPI3_HOST)) { goto cleanup; } ret = esp_intr_alloc(spicommon_irqdma_source_for_host(adc_ctx->spi_host), ESP_INTR_FLAG_IRAM, adc_dma_intr_handler, (void *)adc_ctx, &adc_ctx->dma_intr_hdl); if (ret != ESP_OK) { goto cleanup; } #elif CONFIG_IDF_TARGET_ESP32 //ADC utilises I2S0 DMA on ESP32 uint32_t dma_chan = 0; ret = i2s_platform_acquire_occupation(I2S_NUM_0, "adc"); if (ret != ESP_OK) { ret = ESP_ERR_NOT_FOUND; goto cleanup; } adc_ctx->i2s_host = I2S_NUM_0; ret = esp_intr_alloc(i2s_periph_signal[adc_ctx->i2s_host].irq, ESP_INTR_FLAG_IRAM, adc_dma_intr_handler, (void *)adc_ctx, &adc_ctx->dma_intr_hdl); if (ret != ESP_OK) { goto cleanup; } #endif adc_hal_dma_config_t config = { #if SOC_GDMA_SUPPORTED .dev = (void *)GDMA_LL_GET_HW(0), #elif CONFIG_IDF_TARGET_ESP32S2 .dev = (void *)SPI_LL_GET_HW(adc_ctx->spi_host), #elif CONFIG_IDF_TARGET_ESP32 .dev = (void *)I2S_LL_GET_HW(adc_ctx->i2s_host), #endif .eof_desc_num = INTERNAL_BUF_NUM, .eof_step = dma_desc_num_per_frame, .dma_chan = dma_chan, .eof_num = hdl_config->conv_frame_size / SOC_ADC_DIGI_DATA_BYTES_PER_CONV }; adc_hal_dma_ctx_config(&adc_ctx->hal, &config); adc_ctx->fsm = ADC_FSM_INIT; *ret_handle = adc_ctx; //enable ADC digital part periph_module_enable(PERIPH_SARADC_MODULE); //reset ADC digital part periph_module_reset(PERIPH_SARADC_MODULE); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_1); adc_hal_calibration_init(ADC_UNIT_2); #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED return ret; cleanup: adc_continuous_deinit(adc_ctx); return ret; } #if SOC_GDMA_SUPPORTED static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { assert(event_data); adc_continuous_ctx_t *ctx = (adc_continuous_ctx_t *)user_data; ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr; return s_adc_dma_intr(user_data); } #else static IRAM_ATTR void adc_dma_intr_handler(void *arg) { adc_continuous_ctx_t *ctx = (adc_continuous_ctx_t *)arg; bool need_yield = false; bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK); if (conversion_finish) { adc_hal_digi_clr_intr(&ctx->hal, ADC_HAL_DMA_INTR_MASK); intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal); ctx->rx_eof_desc_addr = desc_addr; need_yield = s_adc_dma_intr(ctx); } if (need_yield) { portYIELD_FROM_ISR(); } } #endif static IRAM_ATTR bool s_adc_dma_intr(adc_continuous_ctx_t *adc_digi_ctx) { portBASE_TYPE taskAwoken = 0; bool need_yield = false; BaseType_t ret; adc_hal_dma_desc_status_t status = false; uint8_t *finished_buffer = NULL; uint32_t finished_size = 0; while (1) { status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &finished_buffer, &finished_size); if (status != ADC_HAL_DMA_DESC_VALID) { break; } ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, finished_buffer, finished_size, &taskAwoken); need_yield |= (taskAwoken == pdTRUE); if (adc_digi_ctx->cbs.on_conv_done) { adc_continuous_evt_data_t edata = { .conv_frame_buffer = finished_buffer, .size = finished_size, }; if (adc_digi_ctx->cbs.on_conv_done(adc_digi_ctx, &edata, adc_digi_ctx->user_data)) { need_yield |= true; } } if (ret == pdFALSE) { //ringbuffer overflow if (adc_digi_ctx->cbs.on_pool_ovf) { adc_continuous_evt_data_t edata = {}; if (adc_digi_ctx->cbs.on_pool_ovf(adc_digi_ctx, &edata, adc_digi_ctx->user_data)) { need_yield |= true; } } } } if (status == ADC_HAL_DMA_DESC_NULL) { //start next turns of dma operation adc_hal_digi_start(&adc_digi_ctx->hal, adc_digi_ctx->rx_dma_buf); } return need_yield; } esp_err_t adc_continuous_start(adc_continuous_handle_t handle) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver isn't initialised"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_INIT, ESP_ERR_INVALID_STATE, ADC_TAG, "ADC continuous mode isn't in the init state, it's started already"); if (handle->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(handle->pm_lock), ADC_TAG, "acquire pm_lock failed"); } handle->fsm = ADC_FSM_STARTED; sar_periph_ctrl_adc_continuous_power_acquire(); //reset flags if (handle->use_adc1) { adc_lock_acquire(ADC_UNIT_1); } if (handle->use_adc2) { adc_lock_acquire(ADC_UNIT_2); } #if SOC_ADC_CALIBRATION_V1_SUPPORTED if (handle->use_adc1) { adc_set_hw_calibration_code(ADC_UNIT_1, handle->adc1_atten); } if (handle->use_adc2) { adc_set_hw_calibration_code(ADC_UNIT_2, handle->adc2_atten); } #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED #if SOC_ADC_ARBITER_SUPPORTED if (handle->use_adc2) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); } #endif //#if SOC_ADC_ARBITER_SUPPORTED if (handle->use_adc1) { adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE); } if (handle->use_adc2) { adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE); } adc_hal_digi_init(&handle->hal); adc_hal_digi_controller_config(&handle->hal, &handle->hal_digi_ctrlr_cfg); //start conversion adc_hal_digi_start(&handle->hal, handle->rx_dma_buf); return ESP_OK; } esp_err_t adc_continuous_stop(adc_continuous_handle_t handle) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver isn't initialised"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_STARTED, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver is already stopped"); handle->fsm = ADC_FSM_INIT; //disable the in suc eof intrrupt adc_hal_digi_dis_intr(&handle->hal, ADC_HAL_DMA_INTR_MASK); //clear the in suc eof interrupt adc_hal_digi_clr_intr(&handle->hal, ADC_HAL_DMA_INTR_MASK); //stop ADC adc_hal_digi_stop(&handle->hal); adc_hal_digi_deinit(&handle->hal); if (handle->use_adc2) { adc_lock_release(ADC_UNIT_2); } if (handle->use_adc1) { adc_lock_release(ADC_UNIT_1); } sar_periph_ctrl_adc_continuous_power_release(); //release power manager lock if (handle->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_release(handle->pm_lock), ADC_TAG, "release pm_lock failed"); } return ESP_OK; } esp_err_t adc_continuous_read(adc_continuous_handle_t handle, uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver isn't initialised"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_STARTED, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver is already stopped"); TickType_t ticks_to_wait; esp_err_t ret = ESP_OK; uint8_t *data = NULL; size_t size = 0; ticks_to_wait = timeout_ms / portTICK_PERIOD_MS; if (timeout_ms == ADC_MAX_DELAY) { ticks_to_wait = portMAX_DELAY; } data = xRingbufferReceiveUpTo(handle->ringbuf_hdl, &size, ticks_to_wait, length_max); if (!data) { ESP_LOGV(ADC_TAG, "No data, increase timeout"); ret = ESP_ERR_TIMEOUT; *out_length = 0; return ret; } memcpy(buf, data, size); vRingbufferReturnItem(handle->ringbuf_hdl, data); assert((size % 4) == 0); *out_length = size; return ret; } esp_err_t adc_continuous_deinit(adc_continuous_handle_t handle) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver isn't initialised"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_INIT, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver is still running"); if (handle->ringbuf_hdl) { vRingbufferDelete(handle->ringbuf_hdl); handle->ringbuf_hdl = NULL; free(handle->ringbuf_storage); free(handle->ringbuf_struct); } if (handle->pm_lock) { esp_pm_lock_delete(handle->pm_lock); } free(handle->rx_dma_buf); free(handle->hal.rx_desc); free(handle->hal_digi_ctrlr_cfg.adc_pattern); #if SOC_GDMA_SUPPORTED gdma_disconnect(handle->rx_dma_channel); gdma_del_channel(handle->rx_dma_channel); #elif CONFIG_IDF_TARGET_ESP32S2 esp_intr_free(handle->dma_intr_hdl); spicommon_dma_chan_free(handle->spi_host); spicommon_periph_free(handle->spi_host); #elif CONFIG_IDF_TARGET_ESP32 esp_intr_free(handle->dma_intr_hdl); i2s_platform_release_occupation(handle->i2s_host); #endif free(handle); handle = NULL; periph_module_disable(PERIPH_SARADC_MODULE); return ESP_OK; } /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ esp_err_t adc_continuous_config(adc_continuous_handle_t handle, const adc_continuous_config_t *config) { ESP_RETURN_ON_FALSE(handle, ESP_ERR_INVALID_STATE, ADC_TAG, "The driver isn't initialised"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_INIT, ESP_ERR_INVALID_STATE, ADC_TAG, "ADC continuous mode isn't in the init state, it's started already"); //Pattern related check ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX); for (int i = 0; i < config->pattern_num; i++) { ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported"); } for (int i = 0; i < config->pattern_num; i++) { #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3 //we add this error log to hint users what happened if (SOC_ADC_DIG_SUPPORTED_UNIT(config->adc_pattern[i].unit) == 0) { ESP_LOGE(ADC_TAG, "ADC2 continuous mode is no longer supported, please use ADC1. Search for errata on espressif website for more details. You can enable CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3 to force use ADC2"); } #endif //CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3 #if !CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3 /** * On all continuous mode supported chips, we will always check the unit to see if it's a continuous mode supported unit. * However, on ESP32C3 and ESP32S3, we will jump this check, if `CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3` is enabled. */ ESP_RETURN_ON_FALSE(SOC_ADC_DIG_SUPPORTED_UNIT(config->adc_pattern[i].unit), ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode"); #endif //#if !CONFIG_ADC_CONTINUOUS_FORCE_USE_ADC2_ON_C3_S3 } ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range"); #if CONFIG_IDF_TARGET_ESP32 ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1"); #elif CONFIG_IDF_TARGET_ESP32S2 if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) { ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2"); } else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) { ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1"); } #else ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2"); #endif uint32_t clk_src_freq_hz = 0; esp_clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz); handle->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num; handle->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz; handle->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode; memcpy(handle->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t)); handle->hal_digi_ctrlr_cfg.clk_src = ADC_DIGI_CLK_SRC_DEFAULT; handle->hal_digi_ctrlr_cfg.clk_src_freq_hz = clk_src_freq_hz; const int atten_uninitialized = 999; handle->adc1_atten = atten_uninitialized; handle->adc2_atten = atten_uninitialized; handle->use_adc1 = 0; handle->use_adc2 = 0; uint32_t adc1_chan_mask = 0; uint32_t adc2_chan_mask = 0; for (int i = 0; i < config->pattern_num; i++) { const adc_digi_pattern_config_t *pat = &config->adc_pattern[i]; if (pat->unit == ADC_UNIT_1) { handle->use_adc1 = 1; adc1_chan_mask |= BIT(pat->channel); if (handle->adc1_atten == atten_uninitialized) { handle->adc1_atten = pat->atten; } else if (handle->adc1_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } else if (pat->unit == ADC_UNIT_2) { handle->use_adc2 = 1; adc2_chan_mask |= BIT(pat->channel); if (handle->adc2_atten == atten_uninitialized) { handle->adc2_atten = pat->atten; } else if (handle->adc2_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } } if (handle->use_adc1) { adc_digi_gpio_init(ADC_UNIT_1, adc1_chan_mask); } if (handle->use_adc2) { adc_digi_gpio_init(ADC_UNIT_2, adc2_chan_mask); } return ESP_OK; } esp_err_t adc_continuous_register_event_callbacks(adc_continuous_handle_t handle, const adc_continuous_evt_cbs_t *cbs, void *user_data) { ESP_RETURN_ON_FALSE(handle && cbs, ESP_ERR_INVALID_ARG, ADC_TAG, "invalid argument"); ESP_RETURN_ON_FALSE(handle->fsm == ADC_FSM_INIT, ESP_ERR_INVALID_STATE, ADC_TAG, "ADC continuous mode isn't in the init state, it's started already"); #if CONFIG_ADC_CONTINUOUS_ISR_IRAM_SAFE if (cbs->on_conv_done) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_conv_done), ESP_ERR_INVALID_ARG, ADC_TAG, "on_conv_done callback not in IRAM"); } if (cbs->on_pool_ovf) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_pool_ovf), ESP_ERR_INVALID_ARG, ADC_TAG, "on_pool_ovf callback not in IRAM"); } #endif handle->cbs.on_conv_done = cbs->on_conv_done; handle->cbs.on_pool_ovf = cbs->on_pool_ovf; handle->user_data = user_data; return ESP_OK; } esp_err_t adc_continuous_io_to_channel(int io_num, adc_unit_t *unit_id, adc_channel_t *channel) { return adc_io_to_channel(io_num, unit_id, channel); } esp_err_t adc_continuous_channel_to_io(adc_unit_t unit_id, adc_channel_t channel, int *io_num) { return adc_channel_to_io(unit_id, channel, io_num); }