/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "esp_attr.h" #include "soc/rtc.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/rtc.h" #include "esp32/clk.h" #include "esp32/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/rtc.h" #include "esp32s2/clk.h" #include "esp32s2/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/rtc.h" #include "esp32s3/clk.h" #include "esp32s3/rtc.h" #include "esp32s3/rom/ets_sys.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/rtc.h" #include "esp32c3/clk.h" #include "esp32c3/rtc.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/rtc.h" #include "esp32h2/clk.h" #include "esp32h2/rtc.h" #endif #define MHZ (1000000) // g_ticks_us defined in ROMs for PRO and APP CPU extern uint32_t g_ticks_per_us_pro; #if CONFIG_IDF_TARGET_ESP32 #ifndef CONFIG_FREERTOS_UNICORE extern uint32_t g_ticks_per_us_app; #endif #endif static _lock_t s_esp_rtc_time_lock; static RTC_DATA_ATTR uint64_t s_esp_rtc_time_us = 0, s_rtc_last_ticks = 0; inline static int IRAM_ATTR s_get_cpu_freq_mhz(void) { #if CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32H2 return ets_get_cpu_frequency(); #else return g_ticks_per_us_pro; #endif } int IRAM_ATTR esp_clk_cpu_freq(void) { return s_get_cpu_freq_mhz() * MHZ; } int IRAM_ATTR esp_clk_apb_freq(void) { return MIN(s_get_cpu_freq_mhz(), 80) * MHZ; } int IRAM_ATTR esp_clk_xtal_freq(void) { return rtc_clk_xtal_freq_get() * MHZ; } #if !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2 void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us) { /* Update scale factors used by esp_rom_delay_us */ g_ticks_per_us_pro = ticks_per_us; #if CONFIG_IDF_TARGET_ESP32 #ifndef CONFIG_FREERTOS_UNICORE g_ticks_per_us_app = ticks_per_us; #endif #endif } #endif uint64_t esp_rtc_get_time_us(void) { _lock_acquire(&s_esp_rtc_time_lock); const uint32_t cal = esp_clk_slowclk_cal_get(); const uint64_t rtc_this_ticks = rtc_time_get(); const uint64_t ticks = rtc_this_ticks - s_rtc_last_ticks; /* RTC counter result is up to 2^48, calibration factor is up to 2^24, * for a 32kHz clock. We need to calculate (assuming no overflow): * (ticks * cal) >> RTC_CLK_CAL_FRACT * * An overflow in the (ticks * cal) multiplication would cause time to * wrap around after approximately 13 days, which is probably not enough * for some applications. * Therefore multiplication is split into two terms, for the lower 32-bit * and the upper 16-bit parts of "ticks", i.e.: * ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT */ const uint64_t ticks_low = ticks & UINT32_MAX; const uint64_t ticks_high = ticks >> 32; const uint64_t delta_time_us = ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) + ((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT)); s_esp_rtc_time_us += delta_time_us; s_rtc_last_ticks = rtc_this_ticks; _lock_release(&s_esp_rtc_time_lock); return s_esp_rtc_time_us; } void esp_clk_slowclk_cal_set(uint32_t new_cal) { #if defined(CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER) /* To force monotonic time values even when clock calibration value changes, * we adjust esp_rtc_time */ esp_rtc_get_time_us(); #endif // CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal); } uint32_t esp_clk_slowclk_cal_get(void) { return REG_READ(RTC_SLOW_CLK_CAL_REG); } uint64_t esp_clk_rtc_time(void) { #ifdef CONFIG_ESP_TIME_FUNCS_USE_RTC_TIMER return esp_rtc_get_time_us(); #else return 0; #endif }