// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The HAL layer for SPI Slave HD #include #include "esp_types.h" #include "esp_attr.h" #include "esp_err.h" #include "sdkconfig.h" #include "soc/spi_periph.h" #include "soc/lldesc.h" #include "hal/spi_slave_hd_hal.h" #include "soc/soc_caps.h" //This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros. #if SOC_GDMA_SUPPORTED #include "soc/gdma_struct.h" #include "hal/gdma_ll.h" #define spi_dma_ll_rx_reset(dev) gdma_ll_rx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL) #define spi_dma_ll_tx_reset(dev) gdma_ll_tx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL); #define spi_dma_ll_rx_enable_burst_data(dev, enable) gdma_ll_rx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable); #define spi_dma_ll_rx_start(dev, addr) do {\ gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\ gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\ } while (0) #define spi_dma_ll_tx_start(dev, addr) do {\ gdma_ll_tx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\ gdma_ll_tx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\ } while (0) #endif static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t *hal) { spi_dma_ll_rx_enable_burst_data(hal->dma_in, 1); spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1); spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1); spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1); } void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config) { memset(hal, 0, sizeof(spi_slave_hd_hal_context_t)); spi_dev_t* hw = SPI_LL_GET_HW(hal_config->host_id); hal->dev = hw; hal->dma_in = hal_config->dma_in; hal->dma_out = hal_config->dma_out; //Configure slave s_spi_slave_hd_hal_dma_init_config(hal); spi_ll_slave_hd_init(hw); spi_ll_set_addr_bitlen(hw, hal_config->address_bits); spi_ll_set_command_bitlen(hw, hal_config->command_bits); spi_ll_set_dummy(hw, hal_config->dummy_bits); spi_ll_set_rx_lsbfirst(hw, hal_config->rx_lsbfirst); spi_ll_set_tx_lsbfirst(hw, hal_config->tx_lsbfirst); spi_ll_slave_set_mode(hw, hal_config->mode, (hal_config->dma_chan != 0)); spi_ll_disable_intr(hw, UINT32_MAX); spi_ll_clear_intr(hw, UINT32_MAX); spi_ll_set_intr(hw, SPI_LL_INTR_WR_DONE | SPI_LL_INTR_CMD8); bool workaround_required = false; if (!spi_ll_get_intr(hw, SPI_LL_INTR_WR_DONE)) { hal->intr_not_triggered |= SPI_EV_RECV; workaround_required = true; } if (!spi_ll_get_intr(hw, SPI_LL_INTR_CMD8)) { hal->intr_not_triggered |= SPI_EV_SEND; workaround_required = true; } if (workaround_required) { //Workaround if the previous interrupts are not writable spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE); } spi_ll_slave_hd_set_len_cond(hw, SPI_LL_TRANS_LEN_COND_WRBUF | SPI_LL_TRANS_LEN_COND_WRDMA | SPI_LL_TRANS_LEN_COND_RDBUF | SPI_LL_TRANS_LEN_COND_RDDMA); spi_ll_slave_set_seg_mode(hal->dev, true); } void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len) { lldesc_setup_link(hal->dmadesc_rx, out_buf, len, true); spi_ll_dma_fifo_reset(hal->dev); spi_dma_ll_rx_reset(hal->dma_in); spi_ll_slave_reset(hal->dev); spi_ll_infifo_full_clr(hal->dev); spi_ll_clear_intr(hal->dev, SPI_LL_INTR_WR_DONE); spi_ll_slave_set_rx_bitlen(hal->dev, len * 8); spi_ll_dma_rx_enable(hal->dev, 1); spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx[0]); } void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len) { lldesc_setup_link(hal->dmadesc_tx, data, len, false); spi_ll_dma_fifo_reset(hal->dev); spi_dma_ll_tx_reset(hal->dma_out); spi_ll_slave_reset(hal->dev); spi_ll_outfifo_empty_clr(hal->dev); spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8); spi_ll_dma_tx_enable(hal->dev, 1); spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx[0]); } static spi_ll_intr_t get_event_intr(spi_event_t ev) { spi_ll_intr_t intr = 0; if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF; if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF; if (ev & SPI_EV_SEND) intr |= SPI_LL_INTR_CMD8; if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_WR_DONE; if (ev & SPI_EV_CMD9) intr |= SPI_LL_INTR_CMD9; if (ev & SPI_EV_CMDA) intr |= SPI_LL_INTR_CMDA; if (ev & SPI_EV_TRANS) intr |= SPI_LL_INTR_TRANS_DONE; return intr; } bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(ev); if (spi_ll_get_intr(hal->dev, intr)) { spi_ll_clear_intr(hal->dev, intr); return true; } return false; } bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { //The trans_done interrupt is used for the workaround when some interrupt is not writable spi_ll_intr_t intr = get_event_intr(ev); // Workaround for these interrupts not writable uint32_t missing_intr = hal->intr_not_triggered & ev; if (missing_intr) { if ((missing_intr & SPI_EV_RECV) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_WR_DONE)) { hal->intr_not_triggered &= ~SPI_EV_RECV; } if ((missing_intr & SPI_EV_SEND) && spi_ll_get_intr(hal->dev, SPI_LL_INTR_CMD8)) { hal->intr_not_triggered &= ~SPI_EV_SEND; } if (spi_ll_get_intr(hal->dev, SPI_LL_INTR_TRANS_DONE)) { spi_ll_disable_intr(hal->dev, SPI_LL_INTR_TRANS_DONE); } } if (spi_ll_get_intr(hal->dev, intr)) { spi_ll_disable_intr(hal->dev, intr); return true; } return false; } void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(ev); spi_ll_enable_intr(hal->dev, intr); } void spi_slave_hd_hal_invoke_event_intr(spi_slave_hd_hal_context_t* hal, spi_event_t ev) { spi_ll_intr_t intr = get_event_intr(ev); // Workaround for these interrupts not writable if (hal->intr_not_triggered & ev & (SPI_EV_RECV | SPI_EV_SEND)) { intr |= SPI_LL_INTR_TRANS_DONE; } spi_ll_enable_intr(hal->dev, intr); } void spi_slave_hd_hal_read_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *out_data, size_t len) { spi_ll_read_buffer_byte(hal->dev, addr, out_data, len); } void spi_slave_hd_hal_write_buffer(spi_slave_hd_hal_context_t *hal, int addr, uint8_t *data, size_t len) { spi_ll_write_buffer_byte(hal->dev, addr, data, len); } int spi_slave_hd_hal_get_last_addr(spi_slave_hd_hal_context_t *hal) { return spi_ll_slave_hd_get_last_addr(hal->dev); } int spi_slave_hd_hal_get_rxlen(spi_slave_hd_hal_context_t *hal) { //this is by -byte return spi_ll_slave_get_rx_byte_len(hal->dev); } int spi_slave_hd_hal_rxdma_get_len(spi_slave_hd_hal_context_t *hal) { lldesc_t* desc = &hal->dmadesc_rx[0]; return lldesc_get_received_len(desc, NULL); }