// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //replacement for gcc built-in functions #include "sdkconfig.h" #include #include #include "soc/soc_caps.h" #include "freertos/FreeRTOS.h" #ifdef __XTENSA__ #include "xtensa/config/core-isa.h" #ifndef XCHAL_HAVE_S32C1I #error "XCHAL_HAVE_S32C1I not defined, include correct header!" #endif #define HAS_ATOMICS_32 (XCHAL_HAVE_S32C1I == 1) // no 64-bit atomics on Xtensa #define HAS_ATOMICS_64 0 #else // RISCV // GCC toolchain will define this pre-processor if "A" extension is supported #ifndef __riscv_atomic #define __riscv_atomic 0 #endif #define HAS_ATOMICS_32 (__riscv_atomic == 1) #define HAS_ATOMICS_64 ((__riscv_atomic == 1) && (__riscv_xlen == 64)) #endif // (__XTENSA__, __riscv) #if SOC_CPU_CORES_NUM == 1 // Single core SoC: atomics can be implemented using portENTER_CRITICAL_NESTED // and portEXIT_CRITICAL_NESTED, which disable and enable interrupts. #define _ATOMIC_ENTER_CRITICAL() ({ \ unsigned state = portENTER_CRITICAL_NESTED(); \ state; \ }) #define _ATOMIC_EXIT_CRITICAL(state) do { \ portEXIT_CRITICAL_NESTED(state); \ } while (0) #else // SOC_CPU_CORES_NUM _Static_assert(HAS_ATOMICS_32, "32-bit atomics should be supported if SOC_CPU_CORES_NUM > 1"); // Only need to implement 64-bit atomics here. Use a single global portMUX_TYPE spinlock // to emulate the atomics. static portMUX_TYPE s_atomic_lock = portMUX_INITIALIZER_UNLOCKED; // Return value is not used but kept for compatibility with the single-core version above. #define _ATOMIC_ENTER_CRITICAL() ({ \ portENTER_CRITICAL_SAFE(&s_atomic_lock); \ 0; \ }) #define _ATOMIC_EXIT_CRITICAL(state) do { \ (void) (state); \ portEXIT_CRITICAL_SAFE(&s_atomic_lock); \ } while(0) #endif // SOC_CPU_CORES_NUM #ifdef __clang__ // Clang doesn't allow to define "__sync_*" atomics. The workaround is to define function with name "__sync_*_builtin", // which implements "__sync_*" atomic functionality and use asm directive to set the value of symbol "__sync_*" to the name // of defined function. #define CLANG_ATOMIC_SUFFIX(name_) name_ ## _builtin #define CLANG_DECLARE_ALIAS(name_) \ __asm__(".type " # name_ ", @function\n" \ ".global " #name_ "\n" \ ".equ " #name_ ", " #name_ "_builtin"); #else // __clang__ #define CLANG_ATOMIC_SUFFIX(name_) name_ #define CLANG_DECLARE_ALIAS(name_) #endif // __clang__ #define ATOMIC_LOAD(n, type) type __atomic_load_ ## n (const type* mem, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *mem; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define ATOMIC_STORE(n, type) void __atomic_store_ ## n (type* mem, type val, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ *mem = val; \ _ATOMIC_EXIT_CRITICAL(state); \ } #define ATOMIC_EXCHANGE(n, type) type __atomic_exchange_ ## n (type* mem, type val, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *mem; \ *mem = val; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define CMP_EXCHANGE(n, type) bool __atomic_compare_exchange_ ## n (type* mem, type* expect, type desired, bool weak, int success, int failure) \ { \ bool ret = false; \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ if (*mem == *expect) { \ ret = true; \ *mem = desired; \ } else { \ *expect = *mem; \ } \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define FETCH_ADD(n, type) type __atomic_fetch_add_ ## n (type* ptr, type value, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ *ptr = *ptr + value; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define FETCH_SUB(n, type) type __atomic_fetch_sub_ ## n (type* ptr, type value, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ *ptr = *ptr - value; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define FETCH_AND(n, type) type __atomic_fetch_and_ ## n (type* ptr, type value, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ *ptr = *ptr & value; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define FETCH_OR(n, type) type __atomic_fetch_or_ ## n (type* ptr, type value, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ *ptr = *ptr | value; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define FETCH_XOR(n, type) type __atomic_fetch_xor_ ## n (type* ptr, type value, int memorder) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ *ptr = *ptr ^ value; \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } #define SYNC_FETCH_OP(op, n, type) type CLANG_ATOMIC_SUFFIX(__sync_fetch_and_ ## op ##_ ## n) (type* ptr, type value) \ { \ return __atomic_fetch_ ## op ##_ ## n (ptr, value, __ATOMIC_SEQ_CST); \ } \ CLANG_DECLARE_ALIAS( __sync_fetch_and_ ## op ##_ ## n ) #define SYNC_BOOL_CMP_EXCHANGE(n, type) bool CLANG_ATOMIC_SUFFIX(__sync_bool_compare_and_swap_ ## n) (type *ptr, type oldval, type newval) \ { \ bool ret = false; \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ if (*ptr == oldval) { \ *ptr = newval; \ ret = true; \ } \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } \ CLANG_DECLARE_ALIAS( __sync_bool_compare_and_swap_ ## n ) #define SYNC_VAL_CMP_EXCHANGE(n, type) type CLANG_ATOMIC_SUFFIX(__sync_val_compare_and_swap_ ## n) (type *ptr, type oldval, type newval) \ { \ unsigned state = _ATOMIC_ENTER_CRITICAL(); \ type ret = *ptr; \ if (*ptr == oldval) { \ *ptr = newval; \ } \ _ATOMIC_EXIT_CRITICAL(state); \ return ret; \ } \ CLANG_DECLARE_ALIAS( __sync_val_compare_and_swap_ ## n ) #if !HAS_ATOMICS_32 ATOMIC_EXCHANGE(1, uint8_t) ATOMIC_EXCHANGE(2, uint16_t) ATOMIC_EXCHANGE(4, uint32_t) CMP_EXCHANGE(1, uint8_t) CMP_EXCHANGE(2, uint16_t) CMP_EXCHANGE(4, uint32_t) FETCH_ADD(1, uint8_t) FETCH_ADD(2, uint16_t) FETCH_ADD(4, uint32_t) FETCH_SUB(1, uint8_t) FETCH_SUB(2, uint16_t) FETCH_SUB(4, uint32_t) FETCH_AND(1, uint8_t) FETCH_AND(2, uint16_t) FETCH_AND(4, uint32_t) FETCH_OR(1, uint8_t) FETCH_OR(2, uint16_t) FETCH_OR(4, uint32_t) FETCH_XOR(1, uint8_t) FETCH_XOR(2, uint16_t) FETCH_XOR(4, uint32_t) SYNC_FETCH_OP(add, 1, uint8_t) SYNC_FETCH_OP(add, 2, uint16_t) SYNC_FETCH_OP(add, 4, uint32_t) SYNC_FETCH_OP(sub, 1, uint8_t) SYNC_FETCH_OP(sub, 2, uint16_t) SYNC_FETCH_OP(sub, 4, uint32_t) SYNC_FETCH_OP(and, 1, uint8_t) SYNC_FETCH_OP(and, 2, uint16_t) SYNC_FETCH_OP(and, 4, uint32_t) SYNC_FETCH_OP(or, 1, uint8_t) SYNC_FETCH_OP(or, 2, uint16_t) SYNC_FETCH_OP(or, 4, uint32_t) SYNC_FETCH_OP(xor, 1, uint8_t) SYNC_FETCH_OP(xor, 2, uint16_t) SYNC_FETCH_OP(xor, 4, uint32_t) SYNC_BOOL_CMP_EXCHANGE(1, uint8_t) SYNC_BOOL_CMP_EXCHANGE(2, uint16_t) SYNC_BOOL_CMP_EXCHANGE(4, uint32_t) SYNC_VAL_CMP_EXCHANGE(1, uint8_t) SYNC_VAL_CMP_EXCHANGE(2, uint16_t) SYNC_VAL_CMP_EXCHANGE(4, uint32_t) #endif // !HAS_ATOMICS_32 #if !HAS_ATOMICS_64 ATOMIC_LOAD(8, uint64_t) ATOMIC_STORE(8, uint64_t) ATOMIC_EXCHANGE(8, uint64_t) CMP_EXCHANGE(8, uint64_t) FETCH_ADD(8, uint64_t) FETCH_SUB(8, uint64_t) FETCH_AND(8, uint64_t) FETCH_OR(8, uint64_t) FETCH_XOR(8, uint64_t) SYNC_FETCH_OP(add, 8, uint64_t) SYNC_FETCH_OP(sub, 8, uint64_t) SYNC_FETCH_OP(and, 8, uint64_t) SYNC_FETCH_OP(or, 8, uint64_t) SYNC_FETCH_OP(xor, 8, uint64_t) SYNC_BOOL_CMP_EXCHANGE(8, uint64_t) SYNC_VAL_CMP_EXCHANGE(8, uint64_t) #endif // !HAS_ATOMICS_64