// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_types.h" #include "driver/adc.h" #include "soc/efuse_periph.h" #include "esp_err.h" #include "assert.h" #include "esp_adc_cal.h" #include "esp_efuse.h" #define ADC_CAL_CHECK(cond, ret) ({ \ if(!(cond)){ \ return ret; \ } \ }) /* ------------------------ Characterization Constants ---------------------- */ #define ADC_CHAR_VERSION1_EFUSEVAL 1 static const uint32_t adc1_D_mean_low[] = {2231, 1643, 1290, 701}; static const uint32_t adc2_D_mean_low[] = {2305, 1693, 1343, 723}; static const uint32_t adc1_D_mean_high[] = {5775, 5692, 5725, 6209}; static const uint32_t adc2_D_mean_high[] = {5817, 5703, 5731, 6157}; static const int Dlow_data_length = 6; static const int Dhigh_data_length = 8; static const int adc_efuse_block = 2; static const int adc_calib_ver_block = 2; static const int adc_calib_ver_word_loc = 4; static const int adc_calib_ver_offset = 4; static const int adc_calib_ver_len = 3; static const int adc1_atten0_Dlow_word_loc = 6; static const int adc2_atten0_Dlow_word_loc = 7; static const int adc1_atten0_Dhigh_word_loc = 4; static const int adc2_atten0_Dhigh_word_loc = 5; static const int adc1_atten0_Dlow_offset = 16; static const int adc2_atten0_Dlow_offset = 8; static const int adc1_atten0_Dhigh_offset = 16; static const int adc2_atten0_Dhigh_offset = 16; /* ----------------------- EFuse Access Functions --------------------------- */ /** * Convenience function that reads a few bits from efuse and assembles them. * For example, if the contents of the EFuse are: * Word2: 0x1234 Word3:0x5678 * Then, setting base=2, offset=24, len=24 will yield 0x456. * @note does not check for boundaries, make sure parameters are correct * @param blk EFuse Block * @param base the starting word * @param offset the bit offset in the starting word * @param bit how many consecutive bits to fetch * @return the assembled number */ static uint32_t get_consecutive_bits_from_blk(int blk, uint32_t base, int offset, int len) { base += offset / 32; offset %= 32; if (offset + len <= 32 || base == 7) { uint32_t result = esp_efuse_read_reg(blk, base); result <<= (32 - offset - len); result >>= (32 - len); return result; } else { // need to fetch both bytes. uint64_t result = ((uint64_t)esp_efuse_read_reg(blk, base + 1) << 32) + esp_efuse_read_reg(blk, base); result &= ((uint64_t)1 << (offset + len)) - 1; result >>= offset; return result; } } /** * To save space in EFuse, the calibration values for adc are compressed. * The compression scheme is: for X bits of ADC Efuse data, * The actual ADC reading is: BASE_VALUE + 4*ADC_OFFSET * where ADC_OFFSET = bits X-1:0 in Efuse, the highest bit is the sign bit (0:+, 1:-). * * The following functions do this conversion. * @param efuse_val raw values read from efuse. * @param adc_num Specifies the channel number. The 2 adc channels each have different calibration values. * @param attem Specifies the attenuation. Different attenuation level have different calibration values. */ static uint32_t efuse_low_val_to_d(uint16_t efuse_val, adc_unit_t adc_num, adc_atten_t atten) { // efuse_val is 5 bits + 6th sign bit. int32_t rawoffsetval = efuse_val & ((1 << (Dlow_data_length - 1)) - 1); // if the sign bit is 1, it means it is a negative sign. int32_t offset = (efuse_val & (1 << (Dlow_data_length - 1))) ? (-rawoffsetval * 4) : (rawoffsetval * 4); if (adc_num == ADC_UNIT_1) { return offset + adc1_D_mean_low[atten - ADC_ATTEN_DB_0]; } else { return offset + adc2_D_mean_low[atten - ADC_ATTEN_DB_0]; } } static uint32_t efuse_high_val_to_d (uint16_t efuse_val, adc_unit_t adc_num, adc_atten_t atten) { // efuse_val is 7 bits + 8th sign bit. int32_t rawoffsetval = efuse_val & ((1 << (Dhigh_data_length - 1)) - 1); int32_t offset = (efuse_val & (1 << (Dhigh_data_length - 1))) ? (-rawoffsetval * 4) : (rawoffsetval * 4); if (adc_num == ADC_UNIT_1) { return offset + adc1_D_mean_high[atten - ADC_ATTEN_DB_0]; } else { return offset + adc2_D_mean_high[atten - ADC_ATTEN_DB_0]; } } /** * To save space in EFuse, the calibration values for adc are compressed. * The compression scheme is: for X bits of ADC Efuse data, * The actual ADC reading is: BASE_VALUE + 4*ADC_OFFSET * where ADC_OFFSET = bits X-1:0 in Efuse, the highest bit is the sign bit (0:+, 1:-). * * The following functions do the reading. * @param efuse_val raw values read from efuse. * @param adc_num Specifies the channel number. The 2 adc channels each have different calibration values. * @param attem Specifies the attenuation. Different attenuation level have different calibration values. */ static uint32_t read_efuse_tp_low(adc_unit_t adc_num, adc_atten_t atten) { // this fcn retrieves and decodes the calibration value stored in efuse. uint32_t base; int offset; // may need to move magic numbers out if (adc_num == ADC_UNIT_1) { // the first value is at the 16th bit of the 6th word of the efuse block 2, each value is 6 bits long. base = adc1_atten0_Dlow_word_loc; offset = adc1_atten0_Dlow_offset + Dlow_data_length * (atten - ADC_ATTEN_DB_0); } else { // the first value is at the 8th bit of the 7th word of the efuse block 2, each value is 6 bits long. base = adc2_atten0_Dlow_word_loc; offset = adc2_atten0_Dlow_offset + Dlow_data_length * (atten - ADC_ATTEN_DB_0); } uint32_t read_result = get_consecutive_bits_from_blk(adc_efuse_block, base, offset, Dlow_data_length); return read_result; } static uint32_t read_efuse_tp_high(adc_unit_t adc_num, adc_atten_t atten) { // this fcn retrieves and decodes the calibration value stored in efuse. uint32_t base; int offset; if (adc_num == ADC_UNIT_1) { // the first value is at the 16th bit of the 4th word of the efuse block 2, each value is 8 bits long. base = adc1_atten0_Dhigh_word_loc; offset = adc1_atten0_Dhigh_offset + Dhigh_data_length * (atten - ADC_ATTEN_DB_0); } else { // the first value is at the 16th bit of the 5th word of the efuse block 2, each value is 8 bits long. base = adc2_atten0_Dhigh_word_loc; offset = adc2_atten0_Dhigh_offset + Dhigh_data_length * (atten - ADC_ATTEN_DB_0); } uint32_t read_result = get_consecutive_bits_from_blk(adc_efuse_block, base, offset, Dhigh_data_length); return read_result; } /* ----------------------- Characterization Functions ----------------------- */ // coeff_a and coeff_b are actually floats // they are scaled to put them into uint32_t so that the headers do not have to be changed static const int coeff_a_scaling = 65536; static const int coeff_b_scaling = 1024; /** * The Two Point calibration measures the reading at two specific input voltages, and calculates the (assumed linear) relation * between input voltage and ADC response. (Response = A * Vinput + B) * A and B are scaled ints. * @param high The ADC response at the higher voltage of the corresponding attenuation (600mV, 800mV, 1000mV, 2000mV). * @param low The ADC response at the lower voltage of the corresponding attenuation (all 250mV). * */ static void characterize_using_two_point(adc_unit_t adc_num, adc_atten_t atten, uint32_t high, uint32_t low, uint32_t *coeff_a, uint32_t *coeff_b) { // once we have recovered the reference high(Dhigh) and low(Dlow) readings, we can calculate a and b from // the measured high and low readings static const uint32_t v_high[] = {600, 800, 1000, 2000}; static const uint32_t v_low = 250; *coeff_a = coeff_a_scaling * (v_high[atten] - v_low) / (high - low); *coeff_b = coeff_b_scaling * (v_low * high - v_high[atten] * low) / (high - low); } /* ------------------------- Public API ------------------------------------- */ esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source) { if (source != ESP_ADC_CAL_VAL_EFUSE_TP) { return ESP_ERR_NOT_SUPPORTED; } uint8_t adc1_atten0_dh = get_consecutive_bits_from_blk(adc_efuse_block, adc1_atten0_Dhigh_word_loc, adc1_atten0_Dhigh_offset, Dhigh_data_length); uint8_t adc2_atten0_dh = get_consecutive_bits_from_blk(adc_efuse_block, adc2_atten0_Dhigh_word_loc, adc2_atten0_Dhigh_offset, Dhigh_data_length); if (!adc1_atten0_dh || !adc2_atten0_dh) { return ESP_ERR_NOT_SUPPORTED; } uint8_t adc_encoding_version = get_consecutive_bits_from_blk(adc_calib_ver_block, adc_calib_ver_word_loc, adc_calib_ver_offset, adc_calib_ver_len); if (adc_encoding_version != 1) { // current version only accepts encoding ver 1. return ESP_ERR_INVALID_VERSION; } return ESP_OK; } esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num, adc_atten_t atten, adc_bits_width_t bit_width, uint32_t default_vref, esp_adc_cal_characteristics_t *chars) { // Check parameters assert((adc_num == ADC_UNIT_1) || (adc_num == ADC_UNIT_2)); assert(chars != NULL); assert(bit_width == ADC_WIDTH_BIT_13); // Characterize based on efuse Two Point values. If these values are not present in efuse, // or efuse values are of a version that we do not recognize, automatically assume default values. uint32_t adc_calib_high, adc_calib_low; if (esp_adc_cal_check_efuse(ESP_ADC_CAL_VAL_EFUSE_TP) == ESP_OK) { adc_calib_high = read_efuse_tp_high(adc_num, atten); adc_calib_low = read_efuse_tp_low(adc_num, atten); } else { adc_calib_high = 0; adc_calib_low = 0; } uint32_t high = efuse_high_val_to_d(adc_calib_high, adc_num, atten); uint32_t low = efuse_low_val_to_d(adc_calib_low, adc_num, atten); characterize_using_two_point(adc_num, atten, high, low, &(chars->coeff_a), &(chars->coeff_b)); // Initialize remaining fields chars->adc_num = adc_num; chars->atten = atten; chars->bit_width = bit_width; // these values are not used as the corresponding calibration themes are deprecated. chars->vref = 0; chars->low_curve = NULL; chars->high_curve = NULL; // in esp32s2 we only use the two point method to calibrate the adc. return ESP_ADC_CAL_VAL_EFUSE_TP; } uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars) { ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG); return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling; } esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel, const esp_adc_cal_characteristics_t *chars, uint32_t *voltage) { // Check parameters ADC_CAL_CHECK(chars != NULL, ESP_ERR_INVALID_ARG); ADC_CAL_CHECK(voltage != NULL, ESP_ERR_INVALID_ARG); int adc_reading; if (chars->adc_num == ADC_UNIT_1) { //Check if channel is valid on ADC1 ADC_CAL_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, ESP_ERR_INVALID_ARG); adc_reading = adc1_get_raw(channel); } else { //Check if channel is valid on ADC2 ADC_CAL_CHECK((adc2_channel_t)channel < ADC2_CHANNEL_MAX, ESP_ERR_INVALID_ARG); if (adc2_get_raw(channel, chars->bit_width, &adc_reading) != ESP_OK) { return ESP_ERR_TIMEOUT; //Timed out waiting for ADC2 } } *voltage = esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, chars); return ESP_OK; }