/* * SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "driver/periph_ctrl.h" #include "esp_crypto_lock.h" #include "hal/ds_hal.h" #include "hal/ds_ll.h" #include "hal/hmac_hal.h" #include "esp32s3/rom/digital_signature.h" #include "esp_timer.h" #include "esp_ds.h" struct esp_ds_context { const esp_ds_data_t *data; }; /** * The vtask delay \c esp_ds_sign() is using while waiting for completion of the signing operation. */ #define ESP_DS_SIGN_TASK_DELAY_MS 10 #define RSA_LEN_MAX 127 /* * esp_digital_signature_length_t is used in esp_ds_data_t in contrast to ets_ds_data_t, where unsigned is used. * Check esp_digital_signature_length_t's width here because it's converted to unsigned using raw casts. */ _Static_assert(sizeof(esp_digital_signature_length_t) == sizeof(unsigned), "The size of esp_digital_signature_length_t and unsigned has to be the same"); /* * esp_ds_data_t is used in the encryption function but casted to ets_ds_data_t. * Check esp_ds_data_t's width here because it's converted using raw casts. */ _Static_assert(sizeof(esp_ds_data_t) == sizeof(ets_ds_data_t), "The size of esp_ds_data_t and ets_ds_data_t has to be the same"); static void ds_acquire_enable(void) { esp_crypto_ds_lock_acquire(); esp_crypto_mpi_lock_acquire(); // We also enable SHA and HMAC here. SHA is used by HMAC, HMAC is used by DS. periph_module_enable(PERIPH_HMAC_MODULE); periph_module_enable(PERIPH_SHA_MODULE); periph_module_enable(PERIPH_DS_MODULE); hmac_hal_start(); } static void ds_disable_release(void) { ds_hal_finish(); periph_module_disable(PERIPH_DS_MODULE); periph_module_disable(PERIPH_SHA_MODULE); periph_module_disable(PERIPH_HMAC_MODULE); esp_crypto_mpi_lock_release(); esp_crypto_ds_lock_release(); } esp_err_t esp_ds_sign(const void *message, const esp_ds_data_t *data, hmac_key_id_t key_id, void *signature) { // Need to check signature here, otherwise the signature is only checked when the signing has finished and fails // but the signing isn't uninitialized and the mutex is still locked. if (!signature) { return ESP_ERR_INVALID_ARG; } esp_ds_context_t *context; esp_err_t result = esp_ds_start_sign(message, data, key_id, &context); if (result != ESP_OK) { return result; } while (esp_ds_is_busy()) { vTaskDelay(ESP_DS_SIGN_TASK_DELAY_MS / portTICK_PERIOD_MS); } return esp_ds_finish_sign(signature, context); } esp_err_t esp_ds_start_sign(const void *message, const esp_ds_data_t *data, hmac_key_id_t key_id, esp_ds_context_t **esp_ds_ctx) { if (!message || !data || !esp_ds_ctx) { return ESP_ERR_INVALID_ARG; } if (key_id >= HMAC_KEY_MAX) { return ESP_ERR_INVALID_ARG; } if (!(data->rsa_length == ESP_DS_RSA_1024 || data->rsa_length == ESP_DS_RSA_2048 || data->rsa_length == ESP_DS_RSA_3072 || data->rsa_length == ESP_DS_RSA_4096)) { return ESP_ERR_INVALID_ARG; } ds_acquire_enable(); // initiate hmac uint32_t conf_error = hmac_hal_configure(HMAC_OUTPUT_DS, key_id); if (conf_error) { ds_disable_release(); return ESP32S3_ERR_HW_CRYPTO_DS_HMAC_FAIL; } ds_hal_start(); // check encryption key from HMAC int64_t start_time = esp_timer_get_time(); while (ds_ll_busy() != 0) { if ((esp_timer_get_time() - start_time) > SOC_DS_KEY_CHECK_MAX_WAIT_US) { ds_disable_release(); return ESP32S3_ERR_HW_CRYPTO_DS_INVALID_KEY; } } esp_ds_context_t *context = malloc(sizeof(esp_ds_context_t)); if (!context) { ds_disable_release(); return ESP_ERR_NO_MEM; } size_t rsa_len = (data->rsa_length + 1) * 4; ds_hal_write_private_key_params(data->c); ds_hal_configure_iv((uint32_t *)data->iv); ds_hal_write_message(message, rsa_len); // initiate signing ds_hal_start_sign(); context->data = data; *esp_ds_ctx = context; return ESP_OK; } bool esp_ds_is_busy(void) { return ds_hal_busy(); } esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx) { if (!signature || !esp_ds_ctx) { return ESP_ERR_INVALID_ARG; } const esp_ds_data_t *data = esp_ds_ctx->data; unsigned rsa_len = (data->rsa_length + 1) * 4; while (ds_hal_busy()) { } ds_signature_check_t sig_check_result = ds_hal_read_result((uint8_t *) signature, (size_t) rsa_len); esp_err_t return_value = ESP_OK; if (sig_check_result == DS_SIGNATURE_MD_FAIL || sig_check_result == DS_SIGNATURE_PADDING_AND_MD_FAIL) { return_value = ESP32S3_ERR_HW_CRYPTO_DS_INVALID_DIGEST; } if (sig_check_result == DS_SIGNATURE_PADDING_FAIL) { return_value = ESP32S3_ERR_HW_CRYPTO_DS_INVALID_PADDING; } free(esp_ds_ctx); hmac_hal_clean(); ds_disable_release(); return return_value; } esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data, const void *iv, const esp_ds_p_data_t *p_data, const void *key) { if (!p_data) { return ESP_ERR_INVALID_ARG; } esp_err_t result = ESP_OK; esp_crypto_ds_lock_acquire(); periph_module_enable(PERIPH_AES_MODULE); periph_module_enable(PERIPH_DS_MODULE); periph_module_enable(PERIPH_SHA_MODULE); periph_module_enable(PERIPH_HMAC_MODULE); periph_module_enable(PERIPH_RSA_MODULE); ets_ds_data_t *ds_data = (ets_ds_data_t *) data; const ets_ds_p_data_t *ds_plain_data = (const ets_ds_p_data_t *) p_data; ets_ds_result_t ets_result = ets_ds_encrypt_params(ds_data, iv, ds_plain_data, key, ETS_DS_KEY_HMAC); if (ets_result == ETS_DS_INVALID_PARAM) { result = ESP_ERR_INVALID_ARG; } periph_module_disable(PERIPH_RSA_MODULE); periph_module_disable(PERIPH_HMAC_MODULE); periph_module_disable(PERIPH_SHA_MODULE); periph_module_disable(PERIPH_DS_MODULE); periph_module_disable(PERIPH_AES_MODULE); esp_crypto_ds_lock_release(); return result; }