/* * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_err.h" #include "soc/soc_caps.h" #include "hal/rmt_types.h" #include "hal/rmt_hal.h" #include "hal/dma_types.h" #include "esp_intr_alloc.h" #include "esp_heap_caps.h" #include "esp_pm.h" #include "esp_attr.h" #include "esp_private/gdma.h" #include "driver/rmt_common.h" #ifdef __cplusplus extern "C" { #endif #if CONFIG_RMT_ISR_IRAM_SAFE #define RMT_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define RMT_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT #endif // RMT driver object is per-channel, the interrupt source is shared between channels #if CONFIG_RMT_ISR_IRAM_SAFE #define RMT_INTR_ALLOC_FLAG (ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_IRAM) #else #define RMT_INTR_ALLOC_FLAG ESP_INTR_FLAG_SHARED #endif // Hopefully the channel offset won't change in other targets #define RMT_TX_CHANNEL_OFFSET_IN_GROUP 0 #define RMT_RX_CHANNEL_OFFSET_IN_GROUP (SOC_RMT_CHANNELS_PER_GROUP - SOC_RMT_TX_CANDIDATES_PER_GROUP) // DMA buffer size must align to `rmt_symbol_word_t` #define RMT_DMA_DESC_BUF_MAX_SIZE (DMA_DESCRIPTOR_BUFFER_MAX_SIZE & ~(sizeof(rmt_symbol_word_t) - 1)) #define RMT_DMA_NODES_PING_PONG 2 // two nodes ping-pong #define RMT_PM_LOCK_NAME_LEN_MAX 16 typedef struct { struct { rmt_symbol_word_t symbols[SOC_RMT_MEM_WORDS_PER_CHANNEL]; } channels[SOC_RMT_CHANNELS_PER_GROUP]; } rmt_block_mem_t; // RMTMEM address is declared in .peripherals.ld extern rmt_block_mem_t RMTMEM; typedef enum { RMT_CHANNEL_DIRECTION_TX, RMT_CHANNEL_DIRECTION_RX, } rmt_channel_direction_t; typedef enum { RMT_FSM_INIT, RMT_FSM_ENABLE, } rmt_fsm_t; enum { RMT_TX_QUEUE_READY, RMT_TX_QUEUE_PROGRESS, RMT_TX_QUEUE_COMPLETE, RMT_TX_QUEUE_MAX, }; typedef struct rmt_group_t rmt_group_t; typedef struct rmt_channel_t rmt_channel_t; typedef struct rmt_tx_channel_t rmt_tx_channel_t; typedef struct rmt_rx_channel_t rmt_rx_channel_t; typedef struct rmt_sync_manager_t rmt_sync_manager_t; struct rmt_group_t { int group_id; // group ID, index from 0 portMUX_TYPE spinlock; // to protect per-group register level concurrent access rmt_hal_context_t hal; // hal layer for each group rmt_clock_source_t clk_src; // record the group clock source, group clock is shared by all channels uint32_t resolution_hz; // resolution of group clock uint32_t occupy_mask; // a set bit in the mask indicates the channel is not available rmt_tx_channel_t *tx_channels[SOC_RMT_TX_CANDIDATES_PER_GROUP]; // array of RMT TX channels rmt_rx_channel_t *rx_channels[SOC_RMT_RX_CANDIDATES_PER_GROUP]; // array of RMT RX channels rmt_sync_manager_t *sync_manager; // sync manager, this can be extended into an array if there're more sync controllers in one RMT group }; struct rmt_channel_t { int channel_id; // channel ID, index from 0 int gpio_num; // GPIO number used by RMT RX channel uint32_t channel_mask; // mask of the memory blocks that occupied by the channel size_t mem_block_num; // number of occupied RMT memory blocks rmt_group_t *group; // which group the channel belongs to portMUX_TYPE spinlock; // prevent channel resource accessing by user and interrupt concurrently uint32_t resolution_hz; // channel clock resolution intr_handle_t intr; // allocated interrupt handle for each channel rmt_fsm_t fsm; // channel life cycle specific FSM rmt_channel_direction_t direction; // channel direction rmt_symbol_word_t *hw_mem_base; // base address of RMT channel hardware memory rmt_symbol_word_t *dma_mem_base; // base address of RMT channel DMA buffer gdma_channel_handle_t dma_chan; // DMA channel esp_pm_lock_handle_t pm_lock; // power management lock #if CONFIG_PM_ENABLE char pm_lock_name[RMT_PM_LOCK_NAME_LEN_MAX]; // pm lock name #endif // RMT channel common interface // The following IO functions will have per-implementation for TX and RX channel esp_err_t (*del)(rmt_channel_t *channel); esp_err_t (*set_carrier_action)(rmt_channel_t *channel, const rmt_carrier_config_t *config); esp_err_t (*enable)(rmt_channel_t *channel); esp_err_t (*disable)(rmt_channel_t *channel); }; typedef struct { rmt_encoder_handle_t encoder; // encode user payload into RMT symbols const void *payload; // encoder payload size_t payload_bytes; // payload size int loop_count; // transaction can be continued in a loop for specific times int remain_loop_count; // user required loop count may exceed hardware limitation, the driver will transfer them in batches size_t transmitted_symbol_num; // track the number of transmitted symbols struct { uint32_t eot_level : 1; // Set the output level for the "End Of Transmission" uint32_t encoding_done: 1; // Indicate whether the encoding has finished (not the encoding of transmission) } flags; } rmt_tx_trans_desc_t; struct rmt_tx_channel_t { rmt_channel_t base; // channel base class size_t mem_off; // runtime argument, indicating the next writing position in the RMT hardware memory size_t mem_end; // runtime argument, incidating the end of current writing region size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory) size_t queue_size; // size of transaction queue size_t num_trans_inflight; // indicates the number of transactions that are undergoing but not recycled to ready_queue void *queues_storage; // storage of transaction queues QueueHandle_t trans_queues[RMT_TX_QUEUE_MAX]; // transaction queues StaticQueue_t trans_queue_structs[RMT_TX_QUEUE_MAX]; // memory to store the static structure for trans_queues rmt_tx_trans_desc_t *cur_trans; // points to current transaction void *user_data; // user context rmt_tx_done_callback_t on_trans_done; // callback, invoked on trans done dma_descriptor_t dma_nodes[RMT_DMA_NODES_PING_PONG]; // DMA descriptor nodes, make up a circular link list rmt_tx_trans_desc_t trans_desc_pool[]; // tranfer descriptor pool }; typedef struct { void *buffer; // buffer for saving the received symbols size_t buffer_size; // size of the buffer, in bytes size_t received_symbol_num; // track the number of received symbols size_t copy_dest_off; // tracking offset in the copy destination } rmt_rx_trans_desc_t; struct rmt_rx_channel_t { rmt_channel_t base; // channel base class size_t mem_off; // starting offset to fetch the symbols in RMTMEM size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory) rmt_rx_done_callback_t on_recv_done; // callback, invoked on receive done void *user_data; // user context rmt_rx_trans_desc_t trans_desc; // transaction description size_t num_dma_nodes; // number of DMA nodes, determined by how big the memory block that user configures dma_descriptor_t dma_nodes[]; // DMA link nodes }; /** * @brief Acquire RMT group handle * * @param group_id Group ID * @return RMT group handle */ rmt_group_t *rmt_acquire_group_handle(int group_id); /** * @brief Release RMT group handle * * @param group RMT group handle, returned from `rmt_acquire_group_handle` */ void rmt_release_group_handle(rmt_group_t *group); /** * @brief Set clock source for RMT peripheral * * @param chan RMT channel handle * @param clk_src Clock source * @return * - ESP_OK: Set clock source successfully * - ESP_ERR_NOT_SUPPORTED: Set clock source failed because the clk_src is not supported * - ESP_ERR_INVALID_STATE: Set clock source failed because the clk_src is different from other RMT channel * - ESP_FAIL: Set clock source failed because of other error */ esp_err_t rmt_select_periph_clock(rmt_channel_handle_t chan, rmt_clock_source_t clk_src); #ifdef __cplusplus } #endif