/* * SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #include "hal/adc_hal.h" #include "hal/adc_hal_conf.h" #include "hal/assert.h" #include "soc/lldesc.h" #include "soc/soc_caps.h" #if CONFIG_IDF_TARGET_ESP32 //ADC utilises I2S0 DMA on ESP32 #include "hal/i2s_ll.h" #include "hal/i2s_types.h" #include "soc/i2s_struct.h" #endif #if CONFIG_IDF_TARGET_ESP32S2 //ADC utilises SPI3 DMA on ESP32S2 #include "hal/spi_ll.h" #include "soc/spi_struct.h" #endif #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- Single Read ---------------------------------------------------------------*/ /** * For chips without RTC controller, Digital controller is used to trigger an ADC single read. */ #include "esp_rom_sys.h" typedef enum { ADC_EVENT_ADC1_DONE = BIT(0), ADC_EVENT_ADC2_DONE = BIT(1), } adc_hal_event_t; #endif //SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- Define all ADC DMA required operations here ---------------------------------------------------------------*/ #if SOC_GDMA_SUPPORTED #define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask) #define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true) #define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false) #define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan) #define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan) #define adc_dma_ll_rx_start(dev, chan, addr) do { \ gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \ gdma_ll_rx_start(dev, chan); \ } while (0) #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num) #define adc_ll_digi_reset(dev) adc_ll_digi_reset() #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable() #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable() //ADC utilises SPI3 DMA on ESP32S2 #elif CONFIG_IDF_TARGET_ESP32S2 #define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask) #define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask) #define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask) #define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask) #define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan) #define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan) #define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr) #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan) #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num) #define adc_ll_digi_reset(dev) adc_ll_digi_reset() #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable() #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable() //ADC utilises I2S0 DMA on ESP32 #else //CONFIG_IDF_TARGET_ESP32 #define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;}) #define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask) #define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0) #define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0) #define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev) #define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev) #define adc_dma_ll_rx_start(dev, chan, address) do { \ ((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \ i2s_ll_enable_dma(dev, 1); \ ((i2s_dev_t *)(dev))->in_link.start = 1; \ } while (0) #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;}) #define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0) #define adc_ll_digi_reset(dev) do { \ i2s_ll_rx_reset(dev); \ i2s_ll_rx_reset_fifo(dev); \ } while (0) #define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev) #define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev) #define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0 #define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0) //ESP32 ADC uses the DMA through I2S. The I2S needs to be configured. #define I2S_BASE_CLK (2*APB_CLK_FREQ) #define SAMPLE_BITS 16 #define ADC_LL_CLKM_DIV_NUM_DEFAULT 2 #define ADC_LL_CLKM_DIV_B_DEFAULT 0 #define ADC_LL_CLKM_DIV_A_DEFAULT 1 #endif void adc_hal_init(void) { // Set internal FSM wait time, fixed value. adc_ll_digi_set_fsm_time(SOC_ADC_FSM_RSTB_WAIT_DEFAULT, SOC_ADC_FSM_START_WAIT_DEFAULT, SOC_ADC_FSM_STANDBY_WAIT_DEFAULT); adc_ll_set_sample_cycle(ADC_FSM_SAMPLE_CYCLE_DEFAULT); adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT); adc_ll_digi_output_invert(ADC_NUM_1, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_1)); adc_ll_digi_output_invert(ADC_NUM_2, SOC_ADC_DIGI_DATA_INVERT_DEFAULT(ADC_NUM_2)); adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT); } #if SOC_ADC_ARBITER_SUPPORTED void adc_hal_arbiter_config(adc_arbiter_t *config) { adc_ll_set_arbiter_work_mode(config->mode); adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri); } #endif // #if SOC_ADC_ARBITER_SUPPORTED void adc_hal_digi_deinit(adc_hal_context_t *hal) { adc_ll_digi_trigger_disable(hal->dev); adc_ll_digi_dma_disable(); adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_clear_pattern_table(ADC_NUM_2); adc_ll_digi_reset(hal->dev); adc_ll_digi_controller_clk_disable(); } /*--------------------------------------------------------------- Controller Setting ---------------------------------------------------------------*/ static adc_ll_controller_t get_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode) { if (unit == ADC_NUM_1) { switch (work_mode) { #if SOC_ULP_SUPPORTED case ADC_HAL_ULP_MODE: return ADC_LL_CTRL_ULP; #endif case ADC_HAL_SINGLE_READ_MODE: #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED return ADC_LL_CTRL_DIG; #elif SOC_ADC_RTC_CTRL_SUPPORTED return ADC_LL_CTRL_RTC; #endif case ADC_HAL_CONTINUOUS_READ_MODE: return ADC_LL_CTRL_DIG; default: abort(); } } else { switch (work_mode) { #if SOC_ULP_SUPPORTED case ADC_HAL_ULP_MODE: return ADC_LL_CTRL_ULP; #endif #if !SOC_ADC_ARBITER_SUPPORTED //No ADC2 arbiter on ESP32 case ADC_HAL_SINGLE_READ_MODE: return ADC_LL_CTRL_RTC; case ADC_HAL_CONTINUOUS_READ_MODE: return ADC_LL_CTRL_DIG; case ADC_HAL_PWDET_MODE: return ADC_LL_CTRL_PWDET; default: abort(); #else default: return ADC_LL_CTRL_ARB; #endif } } } void adc_hal_set_controller(adc_ll_num_t unit, adc_hal_work_mode_t work_mode) { adc_ll_controller_t ctrlr = get_controller(unit, work_mode); adc_ll_set_controller(unit, ctrlr); } /*--------------------------------------------------------------- DMA read ---------------------------------------------------------------*/ static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode) { #if CONFIG_IDF_TARGET_ESP32 return ADC_LL_DIGI_CONV_ONLY_ADC1; #endif #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1) return ADC_LL_DIGI_CONV_ALTER_UNIT; #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2) switch (convert_mode) { case ADC_CONV_SINGLE_UNIT_1: return ADC_LL_DIGI_CONV_ONLY_ADC1; case ADC_CONV_SINGLE_UNIT_2: return ADC_LL_DIGI_CONV_ONLY_ADC2; case ADC_CONV_BOTH_UNIT: return ADC_LL_DIGI_CONV_BOTH_UNIT; case ADC_CONV_ALTER_UNIT: return ADC_LL_DIGI_CONV_ALTER_UNIT; default: abort(); } #endif } /** * For esp32s2 and later chips * - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock. * Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1). * - Enable clock and select clock source for ADC digital controller. * For esp32, use I2S clock */ static void adc_hal_digi_sample_freq_config(adc_hal_context_t *hal, uint32_t freq) { #if !CONFIG_IDF_TARGET_ESP32 uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / freq; //set sample interval adc_ll_digi_set_trigger_interval(interval); //Here we set the clock divider factor to make the digital clock to 5M Hz adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT); adc_ll_digi_clk_sel(0); //use APB #else i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_D2CLK); /*!< Clock from PLL_D2_CLK(160M)*/ uint32_t bck = I2S_BASE_CLK / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_B_DEFAULT / ADC_LL_CLKM_DIV_A_DEFAULT) / 2 / freq; i2s_ll_mclk_div_t clk = { .mclk_div = ADC_LL_CLKM_DIV_NUM_DEFAULT, .a = ADC_LL_CLKM_DIV_A_DEFAULT, .b = ADC_LL_CLKM_DIV_B_DEFAULT, }; i2s_ll_rx_set_clk(hal->dev, &clk); i2s_ll_rx_set_bck_div_num(hal->dev, bck); #endif } void adc_hal_digi_controller_config(adc_hal_context_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg) { #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1) //Only one pattern table, this variable is for readability const int pattern_both = 0; adc_ll_digi_clear_pattern_table(pattern_both); adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len); for (int i = 0; i < cfg->adc_pattern_len; i++) { adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]); } #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2) uint32_t adc1_pattern_idx = 0; uint32_t adc2_pattern_idx = 0; adc_ll_digi_clear_pattern_table(ADC_NUM_1); adc_ll_digi_clear_pattern_table(ADC_NUM_2); for (int i = 0; i < cfg->adc_pattern_len; i++) { if (cfg->adc_pattern[i].unit == ADC_NUM_1) { adc_ll_digi_set_pattern_table(ADC_NUM_1, adc1_pattern_idx, cfg->adc_pattern[i]); adc1_pattern_idx++; } else if (cfg->adc_pattern[i].unit == ADC_NUM_2) { adc_ll_digi_set_pattern_table(ADC_NUM_2, adc2_pattern_idx, cfg->adc_pattern[i]); adc2_pattern_idx++; } else { abort(); } } adc_ll_digi_set_pattern_table_len(ADC_NUM_1, adc1_pattern_idx); adc_ll_digi_set_pattern_table_len(ADC_NUM_2, adc2_pattern_idx); #endif if (cfg->conv_limit_en) { adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num); adc_ll_digi_convert_limit_enable(); } else { adc_ll_digi_convert_limit_disable(); } adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode)); //clock and sample frequency adc_hal_digi_sample_freq_config(hal, cfg->sample_freq_hz); } void adc_hal_context_config(adc_hal_context_t *hal, const adc_hal_config_t *config) { hal->desc_dummy_head.next = hal->rx_desc; hal->dev = config->dev; hal->desc_max_num = config->desc_max_num; hal->dma_chan = config->dma_chan; hal->eof_num = config->eof_num; } void adc_hal_digi_init(adc_hal_context_t *hal) { adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK); adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK); adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num); #if CONFIG_IDF_TARGET_ESP32 i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS); i2s_ll_rx_enable_mono_mode(hal->dev, 1); i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1); i2s_ll_enable_builtin_adc(hal->dev, 1); #endif #if CONFIG_IDF_TARGET_ESP32C3 adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); #endif } static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num) { HAL_ASSERT(((uint32_t)data_buf % 4) == 0); HAL_ASSERT((size % 4) == 0); uint32_t n = 0; while (num--) { desc[n] = (dma_descriptor_t) { .dw0.size = size, .dw0.length = 0, .dw0.suc_eof = 0, .dw0.owner = 1, .buffer = data_buf, .next = &desc[n+1] }; data_buf += size; n++; } desc[n-1].next = NULL; } void adc_hal_digi_start(adc_hal_context_t *hal, uint8_t *data_buf) { //stop peripheral and DMA adc_hal_digi_stop(hal); //reset DMA adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan); //reset peripheral adc_ll_digi_reset(hal->dev); //reset the current descriptor address hal->cur_desc_ptr = &hal->desc_dummy_head; adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * ADC_HAL_DATA_LEN_PER_CONV, hal->desc_max_num); //start DMA adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc); //connect DMA and peripheral adc_ll_digi_dma_enable(); //start ADC adc_ll_digi_trigger_enable(hal->dev); } #if !SOC_GDMA_SUPPORTED intptr_t adc_hal_get_desc_addr(adc_hal_context_t *hal) { return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan); } bool adc_hal_check_event(adc_hal_context_t *hal, uint32_t mask) { return adc_dma_ll_rx_get_intr(hal->dev, mask); } #endif //#if !SOC_GDMA_SUPPORTED adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_context_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc) { HAL_ASSERT(hal->cur_desc_ptr); if (!hal->cur_desc_ptr->next) { return ADC_HAL_DMA_DESC_NULL; } if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) { return ADC_HAL_DMA_DESC_WAITING; } hal->cur_desc_ptr = hal->cur_desc_ptr->next; *cur_desc = hal->cur_desc_ptr; return ADC_HAL_DMA_DESC_VALID; } void adc_hal_digi_clr_intr(adc_hal_context_t *hal, uint32_t mask) { adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask); } void adc_hal_digi_dis_intr(adc_hal_context_t *hal, uint32_t mask) { adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask); } void adc_hal_digi_stop(adc_hal_context_t *hal) { //stop ADC adc_ll_digi_trigger_disable(hal->dev); //stop DMA adc_dma_ll_rx_stop(hal->dev, hal->dma_chan); //disconnect DMA and peripheral adc_ll_digi_dma_disable(); } #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- Single Read ---------------------------------------------------------------*/ /** * For chips without RTC controller, Digital controller is used to trigger an ADC single read. */ //--------------------INTR-------------------------------// static adc_ll_intr_t get_event_intr(adc_hal_event_t event) { adc_ll_intr_t intr_mask = 0; if (event & ADC_EVENT_ADC1_DONE) { intr_mask |= ADC_LL_INTR_ADC1_DONE; } if (event & ADC_EVENT_ADC2_DONE) { intr_mask |= ADC_LL_INTR_ADC2_DONE; } return intr_mask; } static void adc_hal_intr_clear(adc_hal_event_t event) { adc_ll_intr_clear(get_event_intr(event)); } static bool adc_hal_intr_get_raw(adc_hal_event_t event) { return adc_ll_intr_get_raw(get_event_intr(event)); } //--------------------Single Read-------------------------------// static void adc_hal_onetime_start(void) { /** * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller * clock cycle. * * This limitation will be removed in hardware future versions. * */ uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1); //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough. uint32_t delay = (1000 * 1000) / digi_clk + 1; //3 ADC digital controller clock cycle delay = delay * 3; //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed. if (digi_clk >= APB_CLK_FREQ/8) { delay = 0; } adc_ll_onetime_start(false); esp_rom_delay_us(delay); adc_ll_onetime_start(true); //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr. } static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw) { if (adc_n == ADC_NUM_1) { *out_raw = adc_ll_adc1_read(); } else if (adc_n == ADC_NUM_2) { *out_raw = adc_ll_adc2_read(); if (adc_ll_analysis_raw_data(adc_n, *out_raw)) { return ESP_ERR_INVALID_STATE; } } return ESP_OK; } esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw) { esp_err_t ret; adc_hal_event_t event; if (adc_n == ADC_NUM_1) { event = ADC_EVENT_ADC1_DONE; } else { event = ADC_EVENT_ADC2_DONE; } adc_hal_intr_clear(event); adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); adc_ll_onetime_sample_enable(adc_n, true); adc_ll_onetime_set_channel(adc_n, channel); //Trigger single read. adc_hal_onetime_start(); while (!adc_hal_intr_get_raw(event)); ret = adc_hal_single_read(adc_n, out_raw); //HW workaround: when enabling periph clock, this should be false adc_ll_onetime_sample_enable(adc_n, false); return ret; } #else // #if SOC_ADC_RTC_CTRL_SUPPORTED esp_err_t adc_hal_convert(adc_ll_num_t adc_n, int channel, int *out_raw) { adc_ll_rtc_enable_channel(adc_n, channel); adc_ll_rtc_start_convert(adc_n, channel); while (adc_ll_rtc_convert_is_done(adc_n) != true); *out_raw = adc_ll_rtc_get_convert_value(adc_n); if ((int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*out_raw))) { return ESP_ERR_INVALID_STATE; } return ESP_OK; } #endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- ADC calibration setting ---------------------------------------------------------------*/ #if SOC_ADC_CALIBRATION_V1_SUPPORTED void adc_hal_calibration_init(adc_ll_num_t adc_n) { adc_ll_calibration_init(adc_n); } static uint32_t s_previous_init_code[SOC_ADC_PERIPH_NUM] = {-1, -1}; void adc_hal_set_calibration_param(adc_ll_num_t adc_n, uint32_t param) { if (param != s_previous_init_code[adc_n]) { adc_ll_set_calibration_param(adc_n, param); s_previous_init_code[adc_n] = param; } } #if SOC_ADC_RTC_CTRL_SUPPORTED static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE); //Set controller /* Enable/disable internal connect GND (for calibration). */ if (internal_gnd) { adc_ll_rtc_disable_channel(adc_n); adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param. } else { adc_ll_rtc_enable_channel(adc_n, channel); adc_ll_set_atten(adc_n, channel, atten); } } static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel) { adc_ll_rtc_start_convert(adc_n, channel); while (adc_ll_rtc_convert_is_done(adc_n) != true); return (uint32_t)adc_ll_rtc_get_convert_value(adc_n); } #elif SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED //For those RTC controller not supported chips, they use digital controller to do the single read. e.g.: esp32c3 static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { adc_ll_onetime_sample_enable(ADC_NUM_1, false); adc_ll_onetime_sample_enable(ADC_NUM_2, false); /* Enable/disable internal connect GND (for calibration). */ if (internal_gnd) { const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1; adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan); } else { adc_ll_onetime_set_channel(adc_n, channel); } adc_ll_onetime_set_atten(atten); adc_ll_onetime_sample_enable(adc_n, true); } static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel) { adc_ll_intr_clear(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE); adc_ll_onetime_start(false); esp_rom_delay_us(5); adc_ll_onetime_start(true); while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE)); uint32_t read_val = -1; if (adc_n == ADC_NUM_1) { read_val = adc_ll_adc1_read(); } else if (adc_n == ADC_NUM_2) { read_val = adc_ll_adc2_read(); if (adc_ll_analysis_raw_data(adc_n, read_val)) { return -1; } } return read_val; } #endif //Do single read via DIGI controller or RTC controller #define ADC_HAL_CAL_TIMES (10) #define ADC_HAL_CAL_OFFSET_RANGE (4096) uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd) { if (adc_n == ADC_NUM_2) { adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); } cal_setup(adc_n, channel, atten, internal_gnd); adc_ll_calibration_prepare(adc_n, channel, internal_gnd); uint32_t code_list[ADC_HAL_CAL_TIMES] = {0}; uint32_t code_sum = 0; uint32_t code_h = 0; uint32_t code_l = 0; uint32_t chk_code = 0; for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) { code_h = ADC_HAL_CAL_OFFSET_RANGE; code_l = 0; chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); uint32_t self_cal = read_cal_channel(adc_n, channel); while (code_h - code_l > 1) { if (self_cal == 0) { code_h = chk_code; } else { code_l = chk_code; } chk_code = (code_h + code_l) / 2; adc_ll_set_calibration_param(adc_n, chk_code); self_cal = read_cal_channel(adc_n, channel); if ((code_h - code_l == 1)) { chk_code += 1; adc_ll_set_calibration_param(adc_n, chk_code); self_cal = read_cal_channel(adc_n, channel); } } code_list[rpt] = chk_code; code_sum += chk_code; } code_l = code_list[0]; code_h = code_list[0]; for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) { code_l = MIN(code_l, code_list[i]); code_h = MAX(code_h, code_list[i]); } chk_code = code_h + code_l; uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4) ? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) : (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1; adc_ll_calibration_finish(adc_n); return ret; } #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED