// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_attr.h" #include "esp_err.h" #include "esp_intr_alloc.h" #include "esp_debug_helpers.h" #include "soc/periph_defs.h" #include "soc/system_reg.h" #include "hal/cpu_hal.h" #include "freertos/FreeRTOS.h" #include "freertos/portmacro.h" #define REASON_YIELD BIT(0) #define REASON_FREQ_SWITCH BIT(1) #define REASON_PRINT_BACKTRACE BIT(2) static portMUX_TYPE reason_spinlock = portMUX_INITIALIZER_UNLOCKED; static volatile uint32_t reason[portNUM_PROCESSORS]; static inline void IRAM_ATTR esp_crosscore_isr_handle_yield(void) { portYIELD_FROM_ISR(); } static void IRAM_ATTR esp_crosscore_isr(void *arg) { uint32_t my_reason_val; //A pointer to the correct reason array item is passed to this ISR. volatile uint32_t *my_reason = arg; //Clear the interrupt first. if (cpu_hal_get_core_id() == 0) { WRITE_PERI_REG(SYSTEM_CPU_INTR_FROM_CPU_0_REG, 0); } else { WRITE_PERI_REG(SYSTEM_CPU_INTR_FROM_CPU_1_REG, 0); } //Grab the reason and clear it. portENTER_CRITICAL_ISR(&reason_spinlock); my_reason_val = *my_reason; *my_reason = 0; portEXIT_CRITICAL_ISR(&reason_spinlock); //Check what we need to do. if (my_reason_val & REASON_YIELD) { esp_crosscore_isr_handle_yield(); } if (my_reason_val & REASON_FREQ_SWITCH) { /* Nothing to do here; the frequency switch event was already * handled by a hook in xtensa_vectors.S. Could be used in the future * to allow DFS features without the extra latency of the ISR hook. */ } if (my_reason_val & REASON_PRINT_BACKTRACE) { esp_backtrace_print(100); } } // Initialize the crosscore interrupt on this core. void esp_crosscore_int_init(void) { portENTER_CRITICAL(&reason_spinlock); reason[cpu_hal_get_core_id()] = 0; portEXIT_CRITICAL(&reason_spinlock); esp_err_t err; if (cpu_hal_get_core_id() == 0) { err = esp_intr_alloc(ETS_FROM_CPU_INTR0_SOURCE, ESP_INTR_FLAG_IRAM, esp_crosscore_isr, (void *)&reason[0], NULL); } else { err = esp_intr_alloc(ETS_FROM_CPU_INTR1_SOURCE, ESP_INTR_FLAG_IRAM, esp_crosscore_isr, (void *)&reason[1], NULL); } assert(err == ESP_OK); } static void IRAM_ATTR esp_crosscore_int_send(int core_id, uint32_t reason_mask) { assert(core_id < portNUM_PROCESSORS); //Mark the reason we interrupt the other CPU portENTER_CRITICAL(&reason_spinlock); reason[core_id] |= reason_mask; portEXIT_CRITICAL(&reason_spinlock); //Poke the other CPU. if (core_id == 0) { WRITE_PERI_REG(SYSTEM_CPU_INTR_FROM_CPU_0_REG, SYSTEM_CPU_INTR_FROM_CPU_0); } else { WRITE_PERI_REG(SYSTEM_CPU_INTR_FROM_CPU_1_REG, SYSTEM_CPU_INTR_FROM_CPU_1); } } void IRAM_ATTR esp_crosscore_int_send_yield(int core_id) { esp_crosscore_int_send(core_id, REASON_YIELD); } void IRAM_ATTR esp_crosscore_int_send_freq_switch(int core_id) { esp_crosscore_int_send(core_id, REASON_FREQ_SWITCH); } void IRAM_ATTR esp_crosscore_int_send_print_backtrace(int core_id) { esp_crosscore_int_send(core_id, REASON_PRINT_BACKTRACE); }