// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <stdint.h> #include <string.h> #include <stdbool.h> #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_system.h" #include "esp_rom_uart.h" #include "esp_clk_internal.h" #include "esp_rom_efuse.h" #include "esp_rom_sys.h" #include "sdkconfig.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rtc.h" #include "esp32/cache_err_int.h" #include "esp32/rom/cache.h" #include "esp32/rom/rtc.h" #include "esp32/spiram.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rtc.h" #include "esp32s2/brownout.h" #include "esp32s2/cache_err_int.h" #include "esp32s2/rom/cache.h" #include "esp32s2/rom/rtc.h" #include "esp32s2/spiram.h" #include "esp32s2/dport_access.h" #include "esp32s2/memprot.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rtc.h" #include "esp32s3/brownout.h" #include "esp32s3/cache_err_int.h" #include "esp32s3/rom/cache.h" #include "esp32s3/rom/rtc.h" #include "esp32s3/spiram.h" #include "esp32s3/dport_access.h" #include "esp32s3/memprot.h" #include "soc/assist_debug_reg.h" #include "soc/cache_memory.h" #endif #include "bootloader_flash_config.h" #include "esp_private/crosscore_int.h" #include "esp_flash_encrypt.h" #include "hal/rtc_io_hal.h" #include "hal/wdt_hal.h" #include "soc/rtc.h" #include "soc/dport_reg.h" #include "soc/efuse_reg.h" #include "soc/periph_defs.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/spinlock.h" #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX #include "trax.h" #endif #include "bootloader_mem.h" #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_APP_BUILD_TYPE_ELF_RAM #include "esp32/rom/spi_flash.h" #endif // CONFIG_APP_BUILD_TYPE_ELF_RAM #endif #include "esp_private/startup_internal.h" #include "esp_private/system_internal.h" extern int _bss_start; extern int _bss_end; extern int _rtc_bss_start; extern int _rtc_bss_end; extern int _init_start; static const char *TAG = "cpu_start"; #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY extern int _ext_ram_bss_start; extern int _ext_ram_bss_end; #endif #ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY extern int _iram_bss_start; extern int _iram_bss_end; #endif #endif // CONFIG_IDF_TARGET_ESP32 #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE static volatile bool s_cpu_up[SOC_CPU_CORES_NUM] = { false }; static volatile bool s_cpu_inited[SOC_CPU_CORES_NUM] = { false }; static volatile bool s_resume_cores; #endif // If CONFIG_SPIRAM_IGNORE_NOTFOUND is set and external RAM is not found or errors out on testing, this is set to false. bool g_spiram_ok = true; #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE void startup_resume_other_cores(void) { s_resume_cores = true; } void IRAM_ATTR call_start_cpu1(void) { cpu_hal_set_vecbase(&_init_start); ets_set_appcpu_boot_addr(0); bootloader_init_mem(); #if CONFIG_ESP_CONSOLE_UART_NONE esp_rom_install_channel_putc(1, NULL); esp_rom_install_channel_putc(2, NULL); #else // CONFIG_ESP_CONSOLE_UART_NONE ets_install_uart_printf(); esp_rom_uart_set_as_console(CONFIG_ESP_CONSOLE_UART_NUM); #endif #if CONFIG_IDF_TARGET_ESP32 DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE); DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE); #else REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_PDEBUGENABLE_REG, 1); REG_WRITE(ASSIST_DEBUG_CORE_1_RCD_RECORDING_REG, 1); #endif s_cpu_up[1] = true; ESP_EARLY_LOGI(TAG, "App cpu up."); //Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler //has started, but it isn't active *on this CPU* yet. esp_cache_err_int_init(); #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_ESP32_TRAX_TWOBANKS trax_start_trace(TRAX_DOWNCOUNT_WORDS); #endif #endif s_cpu_inited[1] = true; while (!s_resume_cores) { esp_rom_delay_us(100); } SYS_STARTUP_FN(); } static void start_other_core(void) { // If not the single core variant of ESP32 - check this since there is // no separate soc_caps.h for the single core variant. bool is_single_core = false; #if CONFIG_IDF_TARGET_ESP32 is_single_core = REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_DIS_APP_CPU); #endif if (!is_single_core) { ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1); #if CONFIG_IDF_TARGET_ESP32 Cache_Flush(1); Cache_Read_Enable(1); #endif esp_cpu_unstall(1); // Enable clock and reset APP CPU. Note that OpenOCD may have already // enabled clock and taken APP CPU out of reset. In this case don't reset // APP CPU again, as that will clear the breakpoints which may have already // been set. #if CONFIG_IDF_TARGET_ESP32 if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) { DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL); DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING); DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING); } #elif CONFIG_IDF_TARGET_ESP32S3 if (!REG_GET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN)) { REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN); REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RUNSTALL); REG_SET_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING); REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_RESETING); } #endif ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1); volatile bool cpus_up = false; while (!cpus_up) { cpus_up = true; for (int i = 0; i < SOC_CPU_CORES_NUM; i++) { cpus_up &= s_cpu_up[i]; } esp_rom_delay_us(100); } } } #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE static void intr_matrix_clear(void) { for (int i = 0; i < ETS_MAX_INTR_SOURCE; i++) { intr_matrix_set(0, i, ETS_INVALID_INUM); #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE intr_matrix_set(1, i, ETS_INVALID_INUM); #endif } } /* * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized, * and the app CPU is in reset. We do have a stack, so we can do the initialization in C. */ void IRAM_ATTR call_start_cpu0(void) { #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE RESET_REASON rst_reas[SOC_CPU_CORES_NUM]; #else RESET_REASON rst_reas[1]; #endif #ifdef __riscv // Configure the global pointer register // (This should be the first thing IDF app does, as any other piece of code could be // relaxed by the linker to access something relative to __global_pointer$) __asm__ __volatile__ ( ".option push\n" ".option norelax\n" "la gp, __global_pointer$\n" ".option pop" ); #endif // Move exception vectors to IRAM cpu_hal_set_vecbase(&_init_start); rst_reas[0] = rtc_get_reset_reason(0); #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE rst_reas[1] = rtc_get_reset_reason(1); #endif #ifndef CONFIG_BOOTLOADER_WDT_ENABLE // from panic handler we can be reset by RWDT or TG0WDT if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE || rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET #endif ) { wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL}; wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_disable(&rtc_wdt_ctx); wdt_hal_write_protect_enable(&rtc_wdt_ctx); } #endif //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this. memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start)); #if defined(CONFIG_IDF_TARGET_ESP32) && defined(CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY) // Clear IRAM BSS memset(&_iram_bss_start, 0, (&_iram_bss_end - &_iram_bss_start) * sizeof(_iram_bss_start)); #endif /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */ if (rst_reas[0] != DEEPSLEEP_RESET) { memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start)); } #if CONFIG_IDF_TARGET_ESP32S2 /* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */ extern void esp_config_instruction_cache_mode(void); esp_config_instruction_cache_mode(); /* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache. Configure the mode of data : cache size, cache associated ways, cache line size. Enable data cache, so if we don't use SPIRAM, it just works. */ #if CONFIG_SPIRAM_BOOT_INIT extern void esp_config_data_cache_mode(void); esp_config_data_cache_mode(); Cache_Enable_DCache(0); #endif #endif #if CONFIG_IDF_TARGET_ESP32S3 /* Configure the mode of instruction cache : cache size, cache line size. */ extern void rom_config_instruction_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size); rom_config_instruction_cache_mode(CONFIG_ESP32S3_INSTRUCTION_CACHE_SIZE, CONFIG_ESP32S3_ICACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_INSTRUCTION_CACHE_LINE_SIZE); /* If we need use SPIRAM, we should use data cache. Configure the mode of data : cache size, cache line size.*/ Cache_Suspend_DCache(); extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size); rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE); Cache_Resume_DCache(0); /* Configure the Cache MMU size for instruction and rodata in flash. */ extern uint32_t Cache_Set_IDROM_MMU_Size(uint32_t irom_size, uint32_t drom_size); extern int _rodata_reserved_start; uint32_t rodata_reserved_start_align = (uint32_t)&_rodata_reserved_start & ~(MMU_PAGE_SIZE - 1); uint32_t cache_mmu_irom_size = ((rodata_reserved_start_align - SOC_DROM_LOW) / MMU_PAGE_SIZE) * sizeof(uint32_t); Cache_Set_IDROM_MMU_Size(cache_mmu_irom_size, CACHE_DROM_MMU_MAX_END - cache_mmu_irom_size); #endif bootloader_init_mem(); #if CONFIG_SPIRAM_BOOT_INIT if (esp_spiram_init() != ESP_OK) { #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY ESP_EARLY_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment"); abort(); #endif #endif #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it."); g_spiram_ok = false; #else ESP_EARLY_LOGE(TAG, "Failed to init external RAM!"); abort(); #endif } if (g_spiram_ok) { esp_spiram_init_cache(); } #endif #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE s_cpu_up[0] = true; #endif ESP_EARLY_LOGI(TAG, "Pro cpu up."); #if SOC_CPU_CORES_NUM > 1 // there is no 'single-core mode' for natively single-core processors #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE start_other_core(); #else ESP_EARLY_LOGI(TAG, "Single core mode"); #if CONFIG_IDF_TARGET_ESP32 DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN); // stop the other core #elif CONFIG_IDF_TARGET_ESP32S3 REG_CLR_BIT(SYSTEM_CORE_1_CONTROL_0_REG, SYSTEM_CONTROL_CORE_1_CLKGATE_EN); #endif #endif // !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE #endif // SOC_CPU_CORES_NUM > 1 #if CONFIG_SPIRAM_MEMTEST if (g_spiram_ok) { bool ext_ram_ok = esp_spiram_test(); if (!ext_ram_ok) { ESP_EARLY_LOGE(TAG, "External RAM failed memory test!"); abort(); } } #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern void instruction_flash_page_info_init(void); instruction_flash_page_info_init(); #endif #if CONFIG_SPIRAM_RODATA extern void rodata_flash_page_info_init(void); rodata_flash_page_info_init(); #endif #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern void esp_spiram_enable_instruction_access(void); esp_spiram_enable_instruction_access(); #endif #if CONFIG_SPIRAM_RODATA extern void esp_spiram_enable_rodata_access(void); esp_spiram_enable_rodata_access(); #endif #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S2_DATA_CACHE_WRAP uint32_t icache_wrap_enable = 0, dcache_wrap_enable = 0; #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP icache_wrap_enable = 1; #endif #if CONFIG_ESP32S2_DATA_CACHE_WRAP dcache_wrap_enable = 1; #endif extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable); esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable); #endif #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start)); #endif //Enable trace memory and immediately start trace. #if CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_ESP32_TRAX_TWOBANKS trax_enable(TRAX_ENA_PRO_APP); #else trax_enable(TRAX_ENA_PRO); #endif #elif CONFIG_IDF_TARGET_ESP32S2 trax_enable(TRAX_ENA_PRO); #endif trax_start_trace(TRAX_DOWNCOUNT_WORDS); #endif // CONFIG_ESP32_TRAX || CONFIG_ESP32S2_TRAX esp_clk_init(); esp_perip_clk_init(); // Now that the clocks have been set-up, set the startup time from RTC // and default RTC-backed system time provider. g_startup_time = esp_rtc_get_time_us(); intr_matrix_clear(); #ifdef CONFIG_ESP_CONSOLE_UART uint32_t clock_hz = rtc_clk_apb_freq_get(); #if CONFIG_IDF_TARGET_ESP32S3 clock_hz = UART_CLK_FREQ_ROM; // From esp32-s3 on, UART clock source is selected to XTAL in ROM #endif esp_rom_uart_set_clock_baudrate(CONFIG_ESP_CONSOLE_UART_NUM, clock_hz, CONFIG_ESP_CONSOLE_UART_BAUDRATE); #endif rtcio_hal_unhold_all(); esp_cache_err_int_init(); #if CONFIG_IDF_TARGET_ESP32S2 #if CONFIG_ESP32S2_MEMPROT_FEATURE #if CONFIG_ESP32S2_MEMPROT_FEATURE_LOCK esp_memprot_set_prot(true, true, NULL); #else esp_memprot_set_prot(true, false, NULL); #endif #endif #endif bootloader_flash_update_id(); // Read the application binary image header. This will also decrypt the header if the image is encrypted. __attribute__((unused)) esp_image_header_t fhdr = {0}; #ifdef CONFIG_APP_BUILD_TYPE_ELF_RAM fhdr.spi_mode = ESP_IMAGE_SPI_MODE_DIO; fhdr.spi_speed = ESP_IMAGE_SPI_SPEED_40M; fhdr.spi_size = ESP_IMAGE_FLASH_SIZE_4MB; extern void esp_rom_spiflash_attach(uint32_t, bool); esp_rom_spiflash_attach(esp_rom_efuse_get_flash_gpio_info(), false); esp_rom_spiflash_unlock(); #else // This assumes that DROM is the first segment in the application binary, i.e. that we can read // the binary header through cache by accessing SOC_DROM_LOW address. memcpy(&fhdr, (void *) SOC_DROM_LOW, sizeof(fhdr)); #endif // CONFIG_APP_BUILD_TYPE_ELF_RAM #if CONFIG_IDF_TARGET_ESP32 #if !CONFIG_SPIRAM_BOOT_INIT // If psram is uninitialized, we need to improve some flash configuration. bootloader_flash_clock_config(&fhdr); bootloader_flash_gpio_config(&fhdr); bootloader_flash_dummy_config(&fhdr); bootloader_flash_cs_timing_config(); #endif //!CONFIG_SPIRAM_BOOT_INIT #endif //CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPI_FLASH_SIZE_OVERRIDE int app_flash_size = esp_image_get_flash_size(fhdr.spi_size); if (app_flash_size < 1 * 1024 * 1024) { ESP_LOGE(TAG, "Invalid flash size in app image header."); abort(); } bootloader_flash_update_size(app_flash_size); #endif //CONFIG_SPI_FLASH_SIZE_OVERRIDE #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE s_cpu_inited[0] = true; volatile bool cpus_inited = false; while (!cpus_inited) { cpus_inited = true; for (int i = 0; i < SOC_CPU_CORES_NUM; i++) { cpus_inited &= s_cpu_inited[i]; } esp_rom_delay_us(100); } #endif SYS_STARTUP_FN(); }