/* * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /** * ADC is shared by multiple components, including: * - esp_phy * - esp_wifi * - driver * * However, usages of above components are different. * Therefore, we put the common used parts into `esp_hw_support`, including: * - adc power maintainance * - adc hw calibration settings * - adc locks, to prevent concurrently using adc hw */ #include #include "sdkconfig.h" #include "sys/lock.h" #include "esp_log.h" #include "esp_check.h" #include "freertos/FreeRTOS.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/adc_hal_common.h" #include "hal/adc_hal_conf.h" #include "esp_private/adc_share_hw_ctrl.h" //For calibration #if CONFIG_IDF_TARGET_ESP32S2 #include "esp_efuse_rtc_table.h" #elif SOC_ADC_CALIBRATION_V1_SUPPORTED #include "esp_efuse_rtc_calib.h" #endif static const char *TAG = "adc_share_hw_ctrl"; extern portMUX_TYPE rtc_spinlock; /*------------------------------------------------------------------------------ * ADC Power *----------------------------------------------------------------------------*/ // This gets incremented when adc_power_acquire() is called, and decremented when // adc_power_release() is called. ADC is powered down when the value reaches zero. // Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL). static int s_adc_power_on_cnt; static void adc_power_on_internal(void) { /* Set the power always on to increase precision. */ adc_hal_set_power_manage(ADC_POWER_SW_ON); } void adc_power_acquire(void) { portENTER_CRITICAL(&rtc_spinlock); s_adc_power_on_cnt++; if (s_adc_power_on_cnt == 1) { adc_power_on_internal(); } portEXIT_CRITICAL(&rtc_spinlock); } static void adc_power_off_internal(void) { #if CONFIG_IDF_TARGET_ESP32 adc_hal_set_power_manage(ADC_POWER_SW_OFF); #else adc_hal_set_power_manage(ADC_POWER_BY_FSM); #endif } void adc_power_release(void) { portENTER_CRITICAL(&rtc_spinlock); s_adc_power_on_cnt--; /* Sanity check */ if (s_adc_power_on_cnt < 0) { portEXIT_CRITICAL(&rtc_spinlock); ESP_LOGE(TAG, "%s called, but s_adc_power_on_cnt == 0", __func__); abort(); } else if (s_adc_power_on_cnt == 0) { adc_power_off_internal(); } portEXIT_CRITICAL(&rtc_spinlock); } #if SOC_ADC_CALIBRATION_V1_SUPPORTED /*--------------------------------------------------------------- ADC Hardware Calibration ---------------------------------------------------------------*/ #if CONFIG_IDF_TARGET_ESP32S2 #define esp_efuse_rtc_calib_get_ver() esp_efuse_rtc_table_read_calib_version() static inline uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten) { int tag = esp_efuse_rtc_table_get_tag(version, adc_unit + 1, atten, RTCCALIB_V2_PARAM_VINIT); return esp_efuse_rtc_table_get_parsed_efuse_value(tag, false); } #endif static uint32_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][SOC_ADC_ATTEN_NUM] = {}; void adc_calc_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten) { if (s_adc_cali_param[adc_n][atten]) { ESP_EARLY_LOGV(TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n + 1, atten, s_adc_cali_param[adc_n][atten]); return ; } // check if we can fetch the values from eFuse. int version = esp_efuse_rtc_calib_get_ver(); uint32_t init_code = 0; if (version == ESP_EFUSE_ADC_CALIB_VER) { init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten); } else { ESP_EARLY_LOGD(TAG, "Calibration eFuse is not configured, use self-calibration for ICode"); adc_power_acquire(); portENTER_CRITICAL(&rtc_spinlock); adc_ll_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT); const bool internal_gnd = true; init_code = adc_hal_self_calibration(adc_n, atten, internal_gnd); portEXIT_CRITICAL(&rtc_spinlock); adc_power_release(); } s_adc_cali_param[adc_n][atten] = init_code; ESP_EARLY_LOGV(TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n + 1, atten, init_code); } void IRAM_ATTR adc_set_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten) { adc_hal_set_calibration_param(adc_n, s_adc_cali_param[adc_n][atten]); } #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED /*--------------------------------------------------------------- ADC Hardware Locks ---------------------------------------------------------------*/ static _lock_t adc1_lock; static _lock_t adc2_lock; esp_err_t adc_lock_acquire(adc_unit_t adc_unit) { if (adc_unit == ADC_UNIT_1) { _lock_acquire(&adc1_lock); } if (adc_unit == ADC_UNIT_2) { _lock_acquire(&adc2_lock); } return ESP_OK; } esp_err_t adc_lock_release(adc_unit_t adc_unit) { if (adc_unit == ADC_UNIT_2) { ESP_RETURN_ON_FALSE(((uint32_t *)adc2_lock != NULL), ESP_ERR_INVALID_STATE, TAG, "adc2 lock release without acquiring"); _lock_release(&adc2_lock); } if (adc_unit == ADC_UNIT_1) { ESP_RETURN_ON_FALSE(((uint32_t *)adc1_lock != NULL), ESP_ERR_INVALID_STATE, TAG, "adc1 lock release without acquiring"); _lock_release(&adc1_lock); } return ESP_OK; } esp_err_t adc_lock_try_acquire(adc_unit_t adc_unit) { if (adc_unit == ADC_UNIT_1) { if (_lock_try_acquire(&adc1_lock) == -1) { return ESP_ERR_TIMEOUT; } } if (adc_unit == ADC_UNIT_2) { if (_lock_try_acquire(&adc2_lock) == -1) { return ESP_ERR_TIMEOUT; } } return ESP_OK; } esp_err_t adc2_wifi_acquire(void) { #if CONFIG_IDF_TARGET_ESP32 /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */ adc_lock_acquire(ADC_UNIT_2); ESP_LOGD(TAG, "Wi-Fi takes adc2 lock."); #endif return ESP_OK; } esp_err_t adc2_wifi_release(void) { #if CONFIG_IDF_TARGET_ESP32 return adc_lock_release(ADC_UNIT_2); #endif return ESP_OK; }