// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "hal/dma_types.h" #include "esp_check.h" #include "esp_heap_caps.h" #include "esp_log.h" #include "esp_async_memcpy.h" #include "esp_async_memcpy_impl.h" static const char *TAG = "async_memcpy"; #define ALIGN_DOWN(val, align) ((val) & ~((align) - 1)) /** * @brief Type of async mcp stream * mcp stream inherits DMA descriptor, besides that, it has a callback function member */ typedef struct { dma_descriptor_t desc; async_memcpy_isr_cb_t cb; void *cb_args; } async_memcpy_stream_t; /** * @brief Type of async mcp driver context */ typedef struct async_memcpy_context_t { async_memcpy_impl_t mcp_impl; // implementation layer portMUX_TYPE spinlock; // spinlock, prevent operating descriptors concurrently intr_handle_t intr_hdl; // interrupt handle uint32_t flags; // extra driver flags dma_descriptor_t *tx_desc; // pointer to the next free TX descriptor dma_descriptor_t *rx_desc; // pointer to the next free RX descriptor dma_descriptor_t *next_rx_desc_to_check; // pointer to the next RX descriptor to recycle uint32_t max_stream_num; // maximum number of streams size_t max_dma_buffer_size; // maximum DMA buffer size async_memcpy_stream_t *out_streams; // pointer to the first TX stream async_memcpy_stream_t *in_streams; // pointer to the first RX stream async_memcpy_stream_t streams_pool[0]; // stream pool (TX + RX), the size is configured during driver installation } async_memcpy_context_t; esp_err_t esp_async_memcpy_install(const async_memcpy_config_t *config, async_memcpy_t *asmcp) { esp_err_t ret = ESP_OK; async_memcpy_context_t *mcp_hdl = NULL; ESP_GOTO_ON_FALSE(config, ESP_ERR_INVALID_ARG, err, TAG, "configuration can't be null"); ESP_GOTO_ON_FALSE(asmcp, ESP_ERR_INVALID_ARG, err, TAG, "can't assign mcp handle to null"); // context memory size + stream pool size size_t total_malloc_size = sizeof(async_memcpy_context_t) + sizeof(async_memcpy_stream_t) * config->backlog * 2; // to work when cache is disabled, the driver handle should located in SRAM mcp_hdl = heap_caps_calloc(1, total_malloc_size, MALLOC_CAP_8BIT | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); ESP_GOTO_ON_FALSE(mcp_hdl, ESP_ERR_NO_MEM, err, TAG, "allocate context memory failed"); mcp_hdl->flags = config->flags; mcp_hdl->out_streams = mcp_hdl->streams_pool; mcp_hdl->in_streams = mcp_hdl->streams_pool + config->backlog; mcp_hdl->max_stream_num = config->backlog; // circle TX/RX descriptors for (size_t i = 0; i < mcp_hdl->max_stream_num; i++) { mcp_hdl->out_streams[i].desc.dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU; mcp_hdl->out_streams[i].desc.next = &mcp_hdl->out_streams[i + 1].desc; mcp_hdl->in_streams[i].desc.dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU; mcp_hdl->in_streams[i].desc.next = &mcp_hdl->in_streams[i + 1].desc; } mcp_hdl->out_streams[mcp_hdl->max_stream_num - 1].desc.next = &mcp_hdl->out_streams[0].desc; mcp_hdl->in_streams[mcp_hdl->max_stream_num - 1].desc.next = &mcp_hdl->in_streams[0].desc; mcp_hdl->tx_desc = &mcp_hdl->out_streams[0].desc; mcp_hdl->rx_desc = &mcp_hdl->in_streams[0].desc; mcp_hdl->next_rx_desc_to_check = &mcp_hdl->in_streams[0].desc; mcp_hdl->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; mcp_hdl->mcp_impl.sram_trans_align = config->sram_trans_align; mcp_hdl->mcp_impl.psram_trans_align = config->psram_trans_align; size_t trans_align = MAX(config->sram_trans_align, config->psram_trans_align); mcp_hdl->max_dma_buffer_size = trans_align ? ALIGN_DOWN(DMA_DESCRIPTOR_BUFFER_MAX_SIZE, trans_align) : DMA_DESCRIPTOR_BUFFER_MAX_SIZE; // initialize implementation layer ret = async_memcpy_impl_init(&mcp_hdl->mcp_impl); ESP_GOTO_ON_ERROR(ret, err, TAG, "DMA M2M init failed"); *asmcp = mcp_hdl; async_memcpy_impl_start(&mcp_hdl->mcp_impl, (intptr_t)&mcp_hdl->out_streams[0].desc, (intptr_t)&mcp_hdl->in_streams[0].desc); return ESP_OK; err: if (mcp_hdl) { free(mcp_hdl); } if (asmcp) { *asmcp = NULL; } return ret; } esp_err_t esp_async_memcpy_uninstall(async_memcpy_t asmcp) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(asmcp, ESP_ERR_INVALID_ARG, err, TAG, "mcp handle can't be null"); async_memcpy_impl_stop(&asmcp->mcp_impl); async_memcpy_impl_deinit(&asmcp->mcp_impl); free(asmcp); err: return ret; } static int async_memcpy_prepare_receive(async_memcpy_t asmcp, void *buffer, size_t size, dma_descriptor_t **start_desc, dma_descriptor_t **end_desc) { uint32_t prepared_length = 0; uint8_t *buf = (uint8_t *)buffer; dma_descriptor_t *desc = asmcp->rx_desc; // descriptor iterator dma_descriptor_t *start = desc; dma_descriptor_t *end = desc; while (size > asmcp->max_dma_buffer_size) { if (desc->dw0.owner != DMA_DESCRIPTOR_BUFFER_OWNER_DMA) { desc->dw0.suc_eof = 0; desc->dw0.size = asmcp->max_dma_buffer_size; desc->buffer = &buf[prepared_length]; desc = desc->next; // move to next descriptor prepared_length += asmcp->max_dma_buffer_size; size -= asmcp->max_dma_buffer_size; } else { // out of RX descriptors goto _exit; } } if (size) { if (desc->dw0.owner != DMA_DESCRIPTOR_BUFFER_OWNER_DMA) { end = desc; // the last descriptor used desc->dw0.suc_eof = 0; desc->dw0.size = size; desc->buffer = &buf[prepared_length]; desc = desc->next; // move to next descriptor prepared_length += size; } else { // out of RX descriptors goto _exit; } } _exit: *start_desc = start; *end_desc = end; return prepared_length; } static int async_memcpy_prepare_transmit(async_memcpy_t asmcp, void *buffer, size_t len, dma_descriptor_t **start_desc, dma_descriptor_t **end_desc) { uint32_t prepared_length = 0; uint8_t *buf = (uint8_t *)buffer; dma_descriptor_t *desc = asmcp->tx_desc; // descriptor iterator dma_descriptor_t *start = desc; dma_descriptor_t *end = desc; while (len > asmcp->max_dma_buffer_size) { if (desc->dw0.owner != DMA_DESCRIPTOR_BUFFER_OWNER_DMA) { desc->dw0.suc_eof = 0; // not the end of the transaction desc->dw0.size = asmcp->max_dma_buffer_size; desc->dw0.length = asmcp->max_dma_buffer_size; desc->buffer = &buf[prepared_length]; desc = desc->next; // move to next descriptor prepared_length += asmcp->max_dma_buffer_size; len -= asmcp->max_dma_buffer_size; } else { // out of TX descriptors goto _exit; } } if (len) { if (desc->dw0.owner != DMA_DESCRIPTOR_BUFFER_OWNER_DMA) { end = desc; // the last descriptor used desc->dw0.suc_eof = 1; // end of the transaction desc->dw0.size = len; desc->dw0.length = len; desc->buffer = &buf[prepared_length]; desc = desc->next; // move to next descriptor prepared_length += len; } else { // out of TX descriptors goto _exit; } } *start_desc = start; *end_desc = end; _exit: return prepared_length; } static bool async_memcpy_get_next_rx_descriptor(async_memcpy_t asmcp, dma_descriptor_t *eof_desc, dma_descriptor_t **next_desc) { dma_descriptor_t *next = asmcp->next_rx_desc_to_check; // additional check, to avoid potential interrupt got triggered by mistake if (next->dw0.owner == DMA_DESCRIPTOR_BUFFER_OWNER_CPU) { asmcp->next_rx_desc_to_check = asmcp->next_rx_desc_to_check->next; *next_desc = next; // return if we need to continue return eof_desc == next ? false : true; } *next_desc = NULL; return false; } esp_err_t esp_async_memcpy(async_memcpy_t asmcp, void *dst, void *src, size_t n, async_memcpy_isr_cb_t cb_isr, void *cb_args) { esp_err_t ret = ESP_OK; dma_descriptor_t *rx_start_desc = NULL; dma_descriptor_t *rx_end_desc = NULL; dma_descriptor_t *tx_start_desc = NULL; dma_descriptor_t *tx_end_desc = NULL; size_t rx_prepared_size = 0; size_t tx_prepared_size = 0; ESP_GOTO_ON_FALSE(asmcp, ESP_ERR_INVALID_ARG, err, TAG, "mcp handle can't be null"); ESP_GOTO_ON_FALSE(async_memcpy_impl_is_buffer_address_valid(&asmcp->mcp_impl, src, dst), ESP_ERR_INVALID_ARG, err, TAG, "buffer address not valid: %p -> %p", src, dst); ESP_GOTO_ON_FALSE(n <= asmcp->max_dma_buffer_size * asmcp->max_stream_num, ESP_ERR_INVALID_ARG, err, TAG, "buffer size too large"); if (asmcp->mcp_impl.sram_trans_align) { ESP_GOTO_ON_FALSE(((n & (asmcp->mcp_impl.sram_trans_align - 1)) == 0), ESP_ERR_INVALID_ARG, err, TAG, "copy size should align to %d bytes", asmcp->mcp_impl.sram_trans_align); } if (asmcp->mcp_impl.psram_trans_align) { ESP_GOTO_ON_FALSE(((n & (asmcp->mcp_impl.psram_trans_align - 1)) == 0), ESP_ERR_INVALID_ARG, err, TAG, "copy size should align to %d bytes", asmcp->mcp_impl.psram_trans_align); } // Prepare TX and RX descriptor portENTER_CRITICAL_SAFE(&asmcp->spinlock); rx_prepared_size = async_memcpy_prepare_receive(asmcp, dst, n, &rx_start_desc, &rx_end_desc); tx_prepared_size = async_memcpy_prepare_transmit(asmcp, src, n, &tx_start_desc, &tx_end_desc); if (rx_start_desc && tx_start_desc && (rx_prepared_size == n) && (tx_prepared_size == n)) { // register user callback to the last descriptor async_memcpy_stream_t *mcp_stream = __containerof(rx_end_desc, async_memcpy_stream_t, desc); mcp_stream->cb = cb_isr; mcp_stream->cb_args = cb_args; // restart RX firstly dma_descriptor_t *desc = rx_start_desc; while (desc != rx_end_desc) { desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; desc = desc->next; } desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; asmcp->rx_desc = desc->next; // restart TX secondly desc = tx_start_desc; while (desc != tx_end_desc) { desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; desc = desc->next; } desc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; asmcp->tx_desc = desc->next; async_memcpy_impl_restart(&asmcp->mcp_impl); } portEXIT_CRITICAL_SAFE(&asmcp->spinlock); // It's unlikely that we have space for rx descriptor but no space for tx descriptor // Both tx and rx descriptor should move in the same pace ESP_GOTO_ON_FALSE(rx_prepared_size == n, ESP_FAIL, err, TAG, "out of rx descriptor"); ESP_GOTO_ON_FALSE(tx_prepared_size == n, ESP_FAIL, err, TAG, "out of tx descriptor"); err: return ret; } IRAM_ATTR void async_memcpy_isr_on_rx_done_event(async_memcpy_impl_t *impl) { bool to_continue = false; async_memcpy_stream_t *in_stream = NULL; dma_descriptor_t *next_desc = NULL; async_memcpy_context_t *asmcp = __containerof(impl, async_memcpy_context_t, mcp_impl); // get the RX eof descriptor address dma_descriptor_t *eof = (dma_descriptor_t *)impl->rx_eof_addr; // traversal all unchecked descriptors do { portENTER_CRITICAL_ISR(&asmcp->spinlock); // There is an assumption that the usage of rx descriptors are in the same pace as tx descriptors (this is determined by M2M DMA working mechanism) // And once the rx descriptor is recycled, the corresponding tx desc is guaranteed to be returned by DMA to_continue = async_memcpy_get_next_rx_descriptor(asmcp, eof, &next_desc); portEXIT_CRITICAL_ISR(&asmcp->spinlock); if (next_desc) { in_stream = __containerof(next_desc, async_memcpy_stream_t, desc); // invoke user registered callback if available if (in_stream->cb) { async_memcpy_event_t e = {0}; if (in_stream->cb(asmcp, &e, in_stream->cb_args)) { impl->isr_need_yield = true; } in_stream->cb = NULL; in_stream->cb_args = NULL; } } } while (to_continue); }