// Copyright 2017-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * Some unit test cases need to have access to reliable timestamps even when CPU and APB clock frequencies change over time. * This reference clock is built upon two peripherals: one RMT channel and one PCNT channel (hopefully we can have these two peripherals in all ESP chips). * * +---------------------+ 500KHz Square Wave +--------------------------+ * | RMT (channel 0, TX) +----------------------------------->+ PCNT (unit 0, channel 0) | * +---------------------+ +--------------------------+ * * RMT TX channel is configured to use a fixed clock (e.g. REF_TICK, XTAL) as clock source, so that our ref clock won't be affected during APB/CPU clock switch. * Configure RMT channel to generate a 500KHz square wave (using carrier feature) to one GPIO. * PCNT takes the input signal from the GPIO and counts the edges (which occur at 1MHz frequency). * PCNT counter is only 16 bit wide, an interrupt is configured to trigger when the counter reaches 30000, * incrementing a 32-bit millisecond counter maintained by software. */ #include "sdkconfig.h" #include "test_utils.h" #include "freertos/FreeRTOS.h" #include "esp_intr_alloc.h" #include "driver/periph_ctrl.h" #include "soc/gpio_sig_map.h" #include "soc/gpio_periph.h" #include "soc/soc_caps.h" #include "hal/rmt_types.h" #include "hal/rmt_hal.h" #include "hal/rmt_ll.h" #include "hal/pcnt_hal.h" #include "esp_rom_gpio.h" #include "esp_rom_sys.h" #define REF_CLOCK_RMT_CHANNEL 0 // RMT channel 0 #define REF_CLOCK_PCNT_UNIT 0 // PCNT unit 0 channel 0 #define REF_CLOCK_GPIO 21 // GPIO used to combine RMT out signal with PCNT input signal #define REF_CLOCK_PRESCALER_MS 30 // PCNT high threshold interrupt fired every 30ms static void IRAM_ATTR pcnt_isr(void *arg); static intr_handle_t s_intr_handle; static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED; static volatile uint32_t s_milliseconds; static rmt_hal_context_t s_rmt_hal; static pcnt_hal_context_t s_pcnt_hal; void ref_clock_init(void) { assert(s_intr_handle == NULL && "ref clock already initialized"); // Route RMT output to GPIO matrix esp_rom_gpio_connect_out_signal(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX, false, false); // Initialize RMT periph_module_enable(PERIPH_RMT_MODULE); rmt_hal_init(&s_rmt_hal); rmt_item32_t data = { .duration0 = 1, .level0 = 1, .duration1 = 0, .level1 = 0 }; rmt_ll_enable_drive_clock(s_rmt_hal.regs, true); #if SOC_RMT_SUPPORT_XTAL rmt_ll_set_group_clock_src(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, RMT_BASECLK_XTAL, 39, 0, 0); // XTAL(40MHz), rmt_sclk => 1MHz (40/(1+39)) #elif SOC_RMT_SUPPORT_REF_TICK rmt_ll_set_group_clock_src(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, RMT_BASECLK_REF, 0, 0, 0); // select REF_TICK (1MHz) #endif rmt_hal_tx_set_channel_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 1000000); // counter clock: 1MHz rmt_ll_tx_enable_idle(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true); // enable idle output rmt_ll_tx_set_idle_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1); // idle level: 1 rmt_ll_tx_enable_carrier_modulation(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true); #if !CONFIG_IDF_TARGET_ESP32 rmt_ll_tx_set_carrier_always_on(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, true); #endif rmt_hal_set_carrier_clock(&s_rmt_hal, REF_CLOCK_RMT_CHANNEL, 1000000, 500000, 0.5); // set carrier to 500KHz rmt_ll_tx_set_carrier_level(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1); rmt_ll_enable_mem_access(s_rmt_hal.regs, true); rmt_ll_tx_reset_pointer(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL); rmt_ll_tx_set_mem_blocks(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, 1); rmt_ll_write_memory(s_rmt_hal.mem, REF_CLOCK_RMT_CHANNEL, &data, 1, 0); rmt_ll_tx_enable_loop(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false); rmt_ll_tx_start(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL); // Route signal to PCNT esp_rom_gpio_connect_in_signal(REF_CLOCK_GPIO, PCNT_SIG_CH0_IN0_IDX, false); if (REF_CLOCK_GPIO != 20) { PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]); } else { PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U); } // Initialize PCNT periph_module_enable(PERIPH_PCNT_MODULE); pcnt_hal_init(&s_pcnt_hal, REF_CLOCK_PCNT_UNIT); pcnt_ll_set_mode(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_CHANNEL_0, PCNT_COUNT_INC, PCNT_COUNT_INC, PCNT_MODE_KEEP, PCNT_MODE_KEEP); pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_L_LIM); pcnt_ll_event_enable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM); pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_ZERO); pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_0); pcnt_ll_event_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_THRES_1); pcnt_ll_set_event_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, PCNT_EVT_H_LIM, REF_CLOCK_PRESCALER_MS * 1000); // Enable PCNT and wait for it to start counting pcnt_ll_counter_resume(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT); pcnt_ll_counter_clear(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT); esp_rom_delay_us(10000); // Enable interrupt s_milliseconds = 0; ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle)); pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT)); pcnt_ll_intr_enable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT); } static void IRAM_ATTR pcnt_isr(void *arg) { portENTER_CRITICAL_ISR(&s_lock); pcnt_ll_clear_intr_status(s_pcnt_hal.dev, BIT(REF_CLOCK_PCNT_UNIT)); s_milliseconds += REF_CLOCK_PRESCALER_MS; portEXIT_CRITICAL_ISR(&s_lock); } void ref_clock_deinit() { assert(s_intr_handle && "ref clock deinit called without init"); // Disable interrupt pcnt_ll_intr_disable(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT); esp_intr_free(s_intr_handle); s_intr_handle = NULL; // Disable RMT rmt_ll_tx_enable_carrier_modulation(s_rmt_hal.regs, REF_CLOCK_RMT_CHANNEL, false); periph_module_disable(PERIPH_RMT_MODULE); // Disable PCNT pcnt_ll_counter_pause(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT); periph_module_disable(PERIPH_PCNT_MODULE); } uint64_t ref_clock_get() { portENTER_CRITICAL(&s_lock); int16_t microseconds = 0; pcnt_ll_get_counter_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, µseconds); uint32_t milliseconds = s_milliseconds; uint32_t intr_status = 0; pcnt_ll_get_intr_status(s_pcnt_hal.dev, &intr_status); if (intr_status & BIT(REF_CLOCK_PCNT_UNIT)) { // refresh counter value, in case the overflow has happened after reading cnt_val pcnt_ll_get_counter_value(s_pcnt_hal.dev, REF_CLOCK_PCNT_UNIT, µseconds); milliseconds += REF_CLOCK_PRESCALER_MS; } portEXIT_CRITICAL(&s_lock); return 1000 * (uint64_t)milliseconds + (uint64_t)microseconds; }