// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The HAL layer for SDIO slave (common part) #include <string.h> #include "soc/slc_struct.h" #include "soc/hinf_struct.h" #include "hal/sdio_slave_types.h" #include "soc/host_struct.h" #include "hal/sdio_slave_hal.h" #include "hal/assert.h" #include "hal/log.h" #include "esp_attr.h" #define SDIO_SLAVE_CHECK(res, str, ret_val) do { if(!(res)){\ HAL_LOGE(TAG, "%s", str);\ return ret_val;\ } }while (0) static const char TAG[] = "SDIO_HAL"; static esp_err_t init_send_queue(sdio_slave_context_t *hal); /**************** Ring buffer for SDIO sending use *****************/ typedef enum { RINGBUF_GET_ONE = 0, RINGBUF_GET_ALL = 1, } ringbuf_get_all_t; typedef enum { RINGBUF_WRITE_PTR, RINGBUF_READ_PTR, RINGBUF_FREE_PTR, } sdio_ringbuf_pointer_t; static esp_err_t sdio_ringbuf_send(sdio_ringbuf_t *buf, esp_err_t (*copy_callback)(uint8_t *, void *), void *arg); static inline esp_err_t sdio_ringbuf_recv(sdio_ringbuf_t *buf, uint8_t **start, uint8_t **end, ringbuf_get_all_t get_all); static inline int sdio_ringbuf_return(sdio_ringbuf_t* buf, uint8_t *ptr); #define _SEND_DESC_NEXT(x) STAILQ_NEXT(&((sdio_slave_hal_send_desc_t*)x)->dma_desc, qe) #define SEND_DESC_NEXT(x) (sdio_slave_hal_send_desc_t*)_SEND_DESC_NEXT(x) #define SEND_DESC_NEXT_SET(x, target) do { \ _SEND_DESC_NEXT(x)=(lldesc_t*)target; \ }while(0) static esp_err_t link_desc_to_last(uint8_t* desc, void* arg) { SEND_DESC_NEXT_SET(arg, desc); return ESP_OK; } //calculate a pointer with offset to a original pointer of the specific ringbuffer static inline uint8_t* sdio_ringbuf_offset_ptr(sdio_ringbuf_t *buf, sdio_ringbuf_pointer_t ptr, uint32_t offset) { uint8_t *buf_ptr; switch (ptr) { case RINGBUF_WRITE_PTR: buf_ptr = buf->write_ptr; break; case RINGBUF_READ_PTR: buf_ptr = buf->read_ptr; break; case RINGBUF_FREE_PTR: buf_ptr = buf->free_ptr; break; default: abort(); } uint8_t *offset_ptr=buf_ptr+offset; if (offset_ptr >= buf->data + buf->size) { offset_ptr -= buf->size; } return offset_ptr; } static esp_err_t sdio_ringbuf_send(sdio_ringbuf_t *buf, esp_err_t (*copy_callback)(uint8_t *, void *), void *arg) { uint8_t* get_ptr = sdio_ringbuf_offset_ptr(buf, RINGBUF_WRITE_PTR, SDIO_SLAVE_SEND_DESC_SIZE); esp_err_t err = ESP_OK; if (copy_callback) { err = (*copy_callback)(get_ptr, arg); } if (err != ESP_OK) return err; buf->write_ptr = get_ptr; return ESP_OK; } // this ringbuf is a return-before-recv-again strategy // since this is designed to be called in the ISR, no parallel logic static inline esp_err_t sdio_ringbuf_recv(sdio_ringbuf_t *buf, uint8_t **start, uint8_t **end, ringbuf_get_all_t get_all) { HAL_ASSERT(buf->free_ptr == buf->read_ptr); //must return before recv again if (start == NULL && end == NULL) return ESP_ERR_INVALID_ARG; // must have a output if (buf->read_ptr == buf->write_ptr) return ESP_ERR_NOT_FOUND; // no data uint8_t *get_start = sdio_ringbuf_offset_ptr(buf, RINGBUF_READ_PTR, SDIO_SLAVE_SEND_DESC_SIZE); if (get_all != RINGBUF_GET_ONE) { buf->read_ptr = buf->write_ptr; } else { buf->read_ptr = get_start; } if (start != NULL) { *start = get_start; } if (end != NULL) { *end = buf->read_ptr; } return ESP_OK; } static inline int sdio_ringbuf_return(sdio_ringbuf_t* buf, uint8_t *ptr) { HAL_ASSERT(sdio_ringbuf_offset_ptr(buf, RINGBUF_FREE_PTR, SDIO_SLAVE_SEND_DESC_SIZE) == ptr); size_t size = (buf->read_ptr + buf->size - buf->free_ptr) % buf->size; size_t count = size / SDIO_SLAVE_SEND_DESC_SIZE; HAL_ASSERT(count * SDIO_SLAVE_SEND_DESC_SIZE==size); buf->free_ptr = buf->read_ptr; return count; } static inline uint8_t* sdio_ringbuf_peek_front(sdio_ringbuf_t* buf) { if (buf->read_ptr != buf->write_ptr) { return sdio_ringbuf_offset_ptr(buf, RINGBUF_READ_PTR, SDIO_SLAVE_SEND_DESC_SIZE); } else { return NULL; } } static inline uint8_t* sdio_ringbuf_peek_rear(sdio_ringbuf_t *buf) { return buf->write_ptr; } static inline bool sdio_ringbuf_empty(sdio_ringbuf_t* buf) { return (buf->read_ptr == buf->write_ptr); } /**************** End of Ring buffer *****************/ void sdio_slave_hal_init(sdio_slave_context_t *hal) { hal->host = sdio_slave_ll_get_host(0); hal->slc = sdio_slave_ll_get_slc(0); hal->hinf = sdio_slave_ll_get_hinf(0); hal->send_state = STATE_IDLE; hal->recv_link_list = (sdio_slave_hal_recv_stailq_t)STAILQ_HEAD_INITIALIZER(hal->recv_link_list); init_send_queue(hal); } void sdio_slave_hal_hw_init(sdio_slave_context_t *hal) { sdio_slave_ll_init(hal->slc); sdio_slave_ll_enable_hs(hal->hinf, true); sdio_slave_ll_set_timing(hal->host, hal->timing); sdio_slave_ll_slvint_t intr_ena = 0xff; sdio_slave_ll_slvint_set_ena(hal->slc, &intr_ena); } static esp_err_t init_send_queue(sdio_slave_context_t *hal) { esp_err_t ret; esp_err_t rcv_res __attribute((unused)); sdio_ringbuf_t *buf = &(hal->send_desc_queue); //initialize pointers buf->write_ptr = buf->data; buf->read_ptr = buf->data; buf->free_ptr = buf->data; sdio_slave_hal_send_desc_t *first = NULL, *last = NULL; //no copy for the first descriptor ret = sdio_ringbuf_send(buf, NULL, NULL); if (ret != ESP_OK) return ret; //loop in the ringbuf to link all the desc one after another as a ring for (int i = 0; i < hal->send_queue_size + 1; i++) { rcv_res = sdio_ringbuf_recv(buf, (uint8_t **) &last, NULL, RINGBUF_GET_ONE); assert (rcv_res == ESP_OK); ret = sdio_ringbuf_send(buf, link_desc_to_last, last); if (ret != ESP_OK) return ret; sdio_ringbuf_return(buf, (uint8_t *) last); } first = NULL; last = NULL; //clear the queue rcv_res = sdio_ringbuf_recv(buf, (uint8_t **) &first, (uint8_t **) &last, RINGBUF_GET_ALL); assert (rcv_res == ESP_OK); HAL_ASSERT(first == last); //there should be only one desc remain sdio_ringbuf_return(buf, (uint8_t *) first); return ESP_OK; } void sdio_slave_hal_set_ioready(sdio_slave_context_t *hal, bool ready) { sdio_slave_ll_set_ioready(hal->hinf, ready); //set IO ready to 1 to allow host to use } /*--------------------------------------------------------------------------- * Send * * The hardware has a cache, so that once a descriptor is loaded onto the linked-list, it cannot be modified * until returned (used) by the hardware. This forbids us from loading descriptors onto the linked list during * the transfer (or the time waiting for host to start a transfer). However, we use a "ringbuffer" (different from * the one in ``freertos/`` folder) holding descriptors to solve this: * 1. The driver allocates continuous memory for several buffer descriptors (the maximum buffer number) during * initialization. Then the driver points the STAILQ_NEXT pointer of all the descriptors except the last one * to the next descriptor of each of them. Then the pointer of the last descriptor points back to the first one: * now the descriptor is in a ring. * 2. The "ringbuffer" has a write pointer points to where app can write new descriptor. The app writes the new descriptor * indicated by the write pointer without touching the STAILQ_NEXT pointer so that the descriptors are always in a * ring-like linked-list. The app never touches the part of linked-list being used by the hardware. * 3. When the hardware needs some data to send, it automatically pick a part of linked descriptors. According to the mode: * - Buffer mode: only pick the next one to the last one sent; * - Stream mode: pick the whole unsent linked list, starting from the one above, to the latest linked one. * The driver removes the STAILQ_NEXT pointer of the last descriptor and put the head of the part to the DMA controller so * that it looks like just a linear linked-list rather than a ring to the hardware. * 4. The counter of sending FIFO can increase when app load new buffers (in STREAM_MODE) or when new transfer should * start (in PACKET_MODE). * 5. When the sending transfer is finished, the driver goes through the descriptors just send in the ISR and push all * the ``arg`` member of descriptors to the queue back to the app, so that the app can handle finished buffers. The * driver also fix the STAILQ_NEXT pointer of the last descriptor so that the descriptors are now in a ring again. ----------------------------------------------------------------------------*/ static inline void send_set_state(sdio_slave_context_t *hal, send_state_t state) { hal->send_state = state; } static inline send_state_t send_get_state(sdio_slave_context_t* hal) { return hal->send_state; } DMA_ATTR static const lldesc_t start_desc = { .owner = 1, .buf = (void*)0x3ffbbbbb, //assign a dma-capable pointer other than NULL, which will not be used .size = 1, .length = 1, .eof = 1, }; //force trigger rx_done interrupt. the interrupt is abused to invoke ISR from the app by the enable bit and never cleared. static void send_isr_invoker_enable(const sdio_slave_context_t *hal) { sdio_slave_ll_send_reset(hal->slc); sdio_slave_ll_send_start(hal->slc, &start_desc); //wait for rx_done while(!sdio_slave_ll_send_invoker_ready(hal->slc)); sdio_slave_ll_send_stop(hal->slc); sdio_slave_ll_send_hostint_clr(hal->host); } static void send_isr_invoker_disable(sdio_slave_context_t *hal) { sdio_slave_ll_send_part_done_clear(hal->slc); } void sdio_slave_hal_send_handle_isr_invoke(sdio_slave_context_t *hal) { sdio_slave_ll_send_part_done_intr_ena(hal->slc, false); } //start hw operation with existing data (if exist) esp_err_t sdio_slave_hal_send_start(sdio_slave_context_t *hal) { SDIO_SLAVE_CHECK(send_get_state(hal) == STATE_IDLE, "already started", ESP_ERR_INVALID_STATE); send_set_state(hal, STATE_WAIT_FOR_START); send_isr_invoker_enable(hal); sdio_slave_ll_send_intr_clr(hal->slc); sdio_slave_ll_send_intr_ena(hal->slc, true); return ESP_OK; } //only stop hw operations, no touch to data as well as counter void sdio_slave_hal_send_stop(sdio_slave_context_t *hal) { sdio_slave_ll_send_stop(hal->slc); send_isr_invoker_disable(hal); sdio_slave_ll_send_intr_ena(hal->slc, false); send_set_state(hal, STATE_IDLE); } static void send_new_packet(sdio_slave_context_t *hal) { // since eof is changed, we have to stop and reset the link list, // and restart new link list operation sdio_slave_hal_send_desc_t *const start_desc = hal->in_flight_head; sdio_slave_hal_send_desc_t *const end_desc = hal->in_flight_end; HAL_ASSERT(start_desc != NULL && end_desc != NULL); sdio_slave_ll_send_stop(hal->slc); sdio_slave_ll_send_reset(hal->slc); sdio_slave_ll_send_start(hal->slc, (lldesc_t*)start_desc); // update pkt_len register to allow host reading. sdio_slave_ll_send_write_len(hal->slc, end_desc->pkt_len); HAL_EARLY_LOGV(TAG, "send_length_write: %d, last_len: %08X", end_desc->pkt_len, sdio_slave_ll_send_read_len(hal->host)); send_set_state(hal, STATE_SENDING); HAL_EARLY_LOGD(TAG, "restart new send: %p->%p, pkt_len: %d", start_desc, end_desc, end_desc->pkt_len); } static esp_err_t send_check_new_packet(sdio_slave_context_t *hal) { esp_err_t ret; sdio_slave_hal_send_desc_t *start = NULL; sdio_slave_hal_send_desc_t *end = NULL; if (hal->sending_mode == SDIO_SLAVE_SEND_PACKET) { ret = sdio_ringbuf_recv(&(hal->send_desc_queue), (uint8_t **) &start, (uint8_t **) &end, RINGBUF_GET_ONE); } else { //stream mode ret = sdio_ringbuf_recv(&(hal->send_desc_queue), (uint8_t **) &start, (uint8_t **) &end, RINGBUF_GET_ALL); } if (ret == ESP_OK) { hal->in_flight_head = start; hal->in_flight_end = end; end->dma_desc.eof = 1; //temporarily break the link ring here, the ring will be re-connected in ``send_isr_eof()``. hal->in_flight_next = SEND_DESC_NEXT(end); SEND_DESC_NEXT_SET(end, NULL); } return ESP_OK; } bool sdio_slave_hal_send_eof_happened(sdio_slave_context_t* hal) { // Goto idle state (cur_start=NULL) if transmission done, // also update sequence and recycle descs. if (sdio_slave_ll_send_done(hal->slc)) { //check current state HAL_ASSERT(send_get_state(hal) == STATE_SENDING); sdio_slave_ll_send_intr_clr(hal->slc); return true; } else { return false; } } //clear counter but keep data esp_err_t sdio_slave_hal_send_reset_counter(sdio_slave_context_t* hal) { SDIO_SLAVE_CHECK(send_get_state(hal) == STATE_IDLE, "reset counter when transmission started", ESP_ERR_INVALID_STATE); sdio_slave_ll_send_write_len(hal->slc, 0); HAL_EARLY_LOGV(TAG, "last_len: %08X", sdio_slave_ll_send_read_len(hal->host)); hal->tail_pkt_len = 0; sdio_slave_hal_send_desc_t *desc = hal->in_flight_head; while(desc != NULL) { hal->tail_pkt_len += desc->dma_desc.length; desc->pkt_len = hal->tail_pkt_len; desc = SEND_DESC_NEXT(desc); } // in theory the desc should be the one right next to the last of in_flight_head, // but the link of last is NULL, so get the desc from the ringbuf directly. desc = (sdio_slave_hal_send_desc_t*)sdio_ringbuf_peek_front(&(hal->send_desc_queue)); while(desc != NULL) { hal->tail_pkt_len += desc->dma_desc.length; desc->pkt_len = hal->tail_pkt_len; desc = SEND_DESC_NEXT(desc); } return ESP_OK; } static esp_err_t send_get_inflight_desc(sdio_slave_context_t *hal, void **out_arg, uint32_t *out_returned_cnt, bool init) { esp_err_t ret; if (init) { HAL_ASSERT(hal->returned_desc == NULL); hal->returned_desc = hal->in_flight_head; send_set_state(hal, STATE_GETTING_RESULT); } if (hal->returned_desc != NULL) { *out_arg = hal->returned_desc->arg; hal->returned_desc = SEND_DESC_NEXT(hal->returned_desc); ret = ESP_OK; } else { if (hal->in_flight_head != NULL) { // fix the link broken of last desc when being sent HAL_ASSERT(hal->in_flight_end != NULL); SEND_DESC_NEXT_SET(hal->in_flight_end, hal->in_flight_next); *out_returned_cnt = sdio_ringbuf_return(&(hal->send_desc_queue), (uint8_t*)hal->in_flight_head); } hal->in_flight_head = NULL; hal->in_flight_end = NULL; ret = ESP_ERR_NOT_FOUND; } return ret; } static esp_err_t send_get_unsent_desc(sdio_slave_context_t *hal, void **out_arg, uint32_t *out_return_cnt) { esp_err_t ret; sdio_slave_hal_send_desc_t *head, *tail; ret = sdio_ringbuf_recv(&(hal->send_desc_queue), (uint8_t **) &head, (uint8_t **) &tail, RINGBUF_GET_ONE); if (ret == ESP_OK) { //currently each packet takes only one desc. HAL_ASSERT(head == tail); (*out_arg) = head->arg; (*out_return_cnt) = sdio_ringbuf_return(&(hal->send_desc_queue), (uint8_t*) head); } else if (ret == ESP_ERR_NOT_FOUND) { // if in wait to send state, set the sequence number of tail to the value last sent, just as if the packet wait to // send never queued. // Go to idle state (cur_end!=NULL and cur_start=NULL) send_set_state(hal, STATE_IDLE); hal->tail_pkt_len = sdio_slave_ll_send_read_len(hal->host); } return ret; } esp_err_t sdio_slave_hal_send_get_next_finished_arg(sdio_slave_context_t *hal, void **out_arg, uint32_t* out_returned_cnt) { bool init = (send_get_state(hal) == STATE_SENDING); if (init) { HAL_ASSERT(hal->in_flight_head != NULL); } else { HAL_ASSERT(send_get_state(hal) == STATE_GETTING_RESULT); } *out_returned_cnt = 0; esp_err_t ret = send_get_inflight_desc(hal, out_arg, out_returned_cnt, init); if (ret == ESP_ERR_NOT_FOUND) { // Go to wait for packet state send_set_state(hal, STATE_WAIT_FOR_START); } return ret; } esp_err_t sdio_slave_hal_send_flush_next_buffer(sdio_slave_context_t *hal, void **out_arg, uint32_t *out_return_cnt) { esp_err_t ret = ESP_OK; *out_return_cnt = 0; bool init = (send_get_state(hal) == STATE_IDLE); if (!init) { if (send_get_state(hal) != STATE_GETTING_RESULT && send_get_state(hal) != STATE_GETTING_UNSENT_DESC) { return ESP_ERR_INVALID_STATE; } } if (init || send_get_state(hal) == STATE_GETTING_RESULT) { ret = send_get_inflight_desc(hal, out_arg, out_return_cnt, init); if (ret == ESP_ERR_NOT_FOUND) { send_set_state(hal, STATE_GETTING_UNSENT_DESC); } } if (send_get_state(hal) == STATE_GETTING_UNSENT_DESC) { ret = send_get_unsent_desc(hal, out_arg, out_return_cnt); if (ret == ESP_ERR_NOT_FOUND) { send_set_state(hal, STATE_IDLE); } } return ret; } esp_err_t sdio_slave_hal_send_new_packet_if_exist(sdio_slave_context_t *hal) { esp_err_t ret; // Go to wait sending state (cur_start!=NULL && cur_end==NULL) if not sending and new packet ready. // Note we may also enter this state by stopping sending in the app. if (send_get_state(hal) == STATE_WAIT_FOR_START) { if (hal->in_flight_head == NULL) { send_check_new_packet(hal); } // Go to sending state (cur_start and cur_end != NULL) if has packet to send. if (hal->in_flight_head) { send_new_packet(hal); ret = ESP_OK; } else { ret = ESP_ERR_NOT_FOUND; } } else { ret = ESP_ERR_INVALID_STATE; } return ret; } static esp_err_t send_write_desc(uint8_t* desc, void* arg) { sdio_slave_hal_send_desc_t* next_desc = SEND_DESC_NEXT(desc); memcpy(desc, arg, sizeof(sdio_slave_hal_send_desc_t)); SEND_DESC_NEXT_SET(desc, next_desc); return ESP_OK; } static void send_isr_invoke(sdio_slave_context_t *hal) { sdio_slave_ll_send_part_done_intr_ena(hal->slc, true); } esp_err_t sdio_slave_hal_send_queue(sdio_slave_context_t* hal, uint8_t *addr, size_t len, void *arg) { hal->tail_pkt_len += len; sdio_slave_hal_send_desc_t new_desc = { .dma_desc = { .size = len, .length = len, .buf = addr, .owner = 1, // in stream mode, the eof is only appended (in ISR) when new packet is ready to be sent .eof = (hal->sending_mode == SDIO_SLAVE_SEND_PACKET), }, .arg = arg, .pkt_len = hal->tail_pkt_len, }; esp_err_t ret = sdio_ringbuf_send(&(hal->send_desc_queue), send_write_desc, &new_desc); send_isr_invoke(hal); return ret; } /*--------------------------------------------------------------------------- * Receive *--------------------------------------------------------------------------*/ static lldesc_t* recv_get_first_empty_buf(sdio_slave_context_t* hal) { sdio_slave_hal_recv_stailq_t *const queue = &(hal->recv_link_list); lldesc_t *desc = STAILQ_FIRST(queue); while(desc && desc->owner == 0) { desc = STAILQ_NEXT(desc, qe); } return desc; } void sdio_slave_hal_recv_stop(sdio_slave_context_t* hal) { sdio_slave_ll_set_ioready(hal->hinf, false); //set IO ready to 0 to stop host from using sdio_slave_ll_send_stop(hal->slc); sdio_slave_ll_recv_stop(hal->slc); sdio_slave_ll_recv_intr_ena(hal->slc, false); } //touching linked list, should be protected by spinlock bool sdio_slave_hal_recv_has_next_item(sdio_slave_context_t* hal) { if (hal->recv_cur_ret == NULL || hal->recv_cur_ret->owner != 0) return false; // This may cause the ``cur_ret`` pointer to be NULL, indicating the list is empty, // in this case the ``tx_done`` should happen no longer until new desc is appended. // The app is responsible to place the pointer to the right place again when appending new desc. hal->recv_cur_ret = STAILQ_NEXT(hal->recv_cur_ret, qe); return true; } bool sdio_slave_hal_recv_done(sdio_slave_context_t *hal) { bool ret = sdio_slave_ll_recv_done(hal->slc); if (ret) { sdio_slave_ll_recv_done_clear(hal->slc); } return ret; } lldesc_t *sdio_slave_hal_recv_unload_desc(sdio_slave_context_t *hal) { sdio_slave_hal_recv_stailq_t *const queue = &hal->recv_link_list; lldesc_t *desc = STAILQ_FIRST(queue); if (desc) { STAILQ_REMOVE_HEAD(queue, qe); } return desc; } void sdio_slave_hal_recv_init_desc(sdio_slave_context_t* hal, lldesc_t *desc, uint8_t *start) { *desc = (lldesc_t) { .size = hal->recv_buffer_size, .buf = start, }; } void sdio_slave_hal_recv_start(sdio_slave_context_t *hal) { sdio_slave_ll_recv_reset(hal->slc); lldesc_t *desc = recv_get_first_empty_buf(hal); if (!desc) { HAL_LOGD(TAG, "recv: restart without desc"); } else { //the counter is handled when add/flush/reset sdio_slave_ll_recv_start(hal->slc, desc); sdio_slave_ll_recv_intr_ena(hal->slc, true); } } void sdio_slave_hal_recv_reset_counter(sdio_slave_context_t *hal) { sdio_slave_ll_recv_size_reset(hal->slc); lldesc_t *desc = recv_get_first_empty_buf(hal); while (desc != NULL) { sdio_slave_ll_recv_size_inc(hal->slc); desc = STAILQ_NEXT(desc, qe); } } void sdio_slave_hal_recv_flush_one_buffer(sdio_slave_context_t *hal) { sdio_slave_hal_recv_stailq_t *const queue = &hal->recv_link_list; lldesc_t *desc = STAILQ_FIRST(queue); assert (desc != NULL && desc->owner == 0); STAILQ_REMOVE_HEAD(queue, qe); desc->owner = 1; STAILQ_INSERT_TAIL(queue, desc, qe); sdio_slave_ll_recv_size_inc(hal->slc); //we only add it to the tail here, without start the DMA nor increase buffer num. } void sdio_slave_hal_load_buf(sdio_slave_context_t *hal, lldesc_t *desc) { sdio_slave_hal_recv_stailq_t *const queue = &(hal->recv_link_list); desc->owner = 1; lldesc_t *const tail = STAILQ_LAST(queue, lldesc_s, qe); STAILQ_INSERT_TAIL(queue, desc, qe); if (hal->recv_cur_ret == NULL) { hal->recv_cur_ret = desc; } if (tail == NULL) { //no one in the ll, start new ll operation. sdio_slave_ll_recv_start(hal->slc, desc); sdio_slave_ll_recv_intr_ena(hal->slc, true); HAL_LOGV(TAG, "recv_load_buf: start new"); } else { //restart former ll operation sdio_slave_ll_recv_restart(hal->slc); HAL_LOGV(TAG, "recv_load_buf: restart"); } sdio_slave_ll_recv_size_inc(hal->slc); } static inline void show_queue_item(lldesc_t *item) { HAL_EARLY_LOGI(TAG, "=> %p: size: %d(%d), eof: %d, owner: %d", item, item->size, item->length, item->eof, item->owner); HAL_EARLY_LOGI(TAG, " buf: %p, stqe_next: %p", item->buf, item->qe.stqe_next); } static void __attribute((unused)) dump_queue(sdio_slave_hal_recv_stailq_t *queue) { int cnt = 0; lldesc_t *item = NULL; HAL_EARLY_LOGI(TAG, ">>>>> first: %p, last: %p <<<<<", queue->stqh_first, queue->stqh_last); STAILQ_FOREACH(item, queue, qe) { cnt++; show_queue_item(item); } HAL_EARLY_LOGI(TAG, "total: %d", cnt); } /*--------------------------------------------------------------------------- * Host *--------------------------------------------------------------------------*/ void sdio_slave_hal_hostint_get_ena(sdio_slave_context_t *hal, sdio_slave_hostint_t *out_int_mask) { *out_int_mask = sdio_slave_ll_host_get_intena(hal->host); } void sdio_slave_hal_hostint_clear(sdio_slave_context_t *hal, const sdio_slave_hostint_t *mask) { sdio_slave_ll_host_intr_clear(hal->host, mask);//clear all interrupts } void sdio_slave_hal_hostint_set_ena(sdio_slave_context_t *hal, const sdio_slave_hostint_t *mask) { sdio_slave_ll_host_set_intena(hal->host, mask); } void sdio_slave_hal_hostint_send(sdio_slave_context_t *hal, const sdio_slave_hostint_t *mask) { sdio_slave_ll_host_send_int(hal->slc, mask); } uint8_t sdio_slave_hal_host_get_reg(sdio_slave_context_t *hal, int pos) { return sdio_slave_ll_host_get_reg(hal->host, pos); } void sdio_slave_hal_host_set_reg(sdio_slave_context_t *hal, int pos, uint8_t reg) { sdio_slave_ll_host_set_reg(hal->host, pos, reg); } void sdio_slave_hal_slvint_fetch_clear(sdio_slave_context_t *hal, sdio_slave_ll_slvint_t *out_int_mask) { sdio_slave_ll_slvint_fetch_clear(hal->slc, out_int_mask); }