// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include // For MIN/MAX #include "spi_flash_chip_generic.h" #include "spi_flash_defs.h" #include "hal/spi_flash_encrypt_hal.h" #include "esp_log.h" #include "esp_attr.h" typedef struct flash_chip_dummy { uint8_t dio_dummy_bitlen; uint8_t qio_dummy_bitlen; uint8_t qout_dummy_bitlen; uint8_t dout_dummy_bitlen; uint8_t fastrd_dummy_bitlen; uint8_t slowrd_dummy_bitlen; } flash_chip_dummy_t; // These parameters can be placed in the ROM. For now we use the code in IDF. DRAM_ATTR const static flash_chip_dummy_t default_flash_chip_dummy = { .dio_dummy_bitlen = SPI_FLASH_DIO_DUMMY_BITLEN, .qio_dummy_bitlen = SPI_FLASH_QIO_DUMMY_BITLEN, .qout_dummy_bitlen = SPI_FLASH_QOUT_DUMMY_BITLEN, .dout_dummy_bitlen = SPI_FLASH_DOUT_DUMMY_BITLEN, .fastrd_dummy_bitlen = SPI_FLASH_FASTRD_DUMMY_BITLEN, .slowrd_dummy_bitlen = SPI_FLASH_SLOWRD_DUMMY_BITLEN, }; // These are the pointer to HW flash encryption. Default using hardware encryption. DRAM_ATTR static spi_flash_encryption_t esp_flash_encryption_default __attribute__((__unused__)) = { .flash_encryption_enable = spi_flash_encryption_hal_enable, .flash_encryption_disable = spi_flash_encryption_hal_disable, .flash_encryption_data_prepare = spi_flash_encryption_hal_prepare, .flash_encryption_done = spi_flash_encryption_hal_done, .flash_encryption_destroy = spi_flash_encryption_hal_destroy, .flash_encryption_check = spi_flash_encryption_hal_check, }; DRAM_ATTR flash_chip_dummy_t *rom_flash_chip_dummy = (flash_chip_dummy_t *)&default_flash_chip_dummy; #define SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS 200 #define SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS 4000 #define SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS 600 //according to GD25Q127(125°) + 100ms #define SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS 4100 //according to GD25Q127(125°) + 100ms #define SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS 500 #define HOST_DELAY_INTERVAL_US 1 #define CHIP_WAIT_IDLE_INTERVAL_US 20 const DRAM_ATTR flash_chip_op_timeout_t spi_flash_chip_generic_timeout = { .idle_timeout = SPI_FLASH_DEFAULT_IDLE_TIMEOUT_MS * 1000, .chip_erase_timeout = SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT_MS * 1000, .block_erase_timeout = SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT_MS * 1000, .sector_erase_timeout = SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT_MS * 1000, .page_program_timeout = SPI_FLASH_GENERIC_PAGE_PROGRAM_TIMEOUT_MS * 1000, }; static const char TAG[] = "chip_generic"; #ifndef CONFIG_SPI_FLASH_ROM_IMPL esp_err_t spi_flash_chip_generic_probe(esp_flash_t *chip, uint32_t flash_id) { // This is the catch-all probe function, claim the chip always if nothing // else has claimed it yet. return ESP_OK; } esp_err_t spi_flash_chip_generic_reset(esp_flash_t *chip) { //this is written following the winbond spec.. spi_flash_trans_t t; t = (spi_flash_trans_t) { .command = CMD_RST_EN, }; esp_err_t err = chip->host->driver->common_command(chip->host, &t); if (err != ESP_OK) { return err; } t = (spi_flash_trans_t) { .command = CMD_RST_DEV, }; err = chip->host->driver->common_command(chip->host, &t); if (err != ESP_OK) { return err; } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); return err; } esp_err_t spi_flash_chip_generic_detect_size(esp_flash_t *chip, uint32_t *size) { uint32_t id = chip->chip_id; *size = 0; /* Can't detect size unless the high byte of the product ID matches the same convention, which is usually 0x40 or * 0xC0 or similar. */ if (((id & 0xFFFF) == 0x0000) || ((id & 0xFFFF) == 0xFFFF)) { return ESP_ERR_FLASH_UNSUPPORTED_CHIP; } *size = 1 << (id & 0xFF); return ESP_OK; } esp_err_t spi_flash_chip_generic_erase_chip(esp_flash_t *chip) { esp_err_t err; err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } //The chip didn't accept the previous write command. Ignore this in preparation stage. if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) { chip->host->driver->erase_chip(chip->host); chip->busy = 1; #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT); #else err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->chip_erase_timeout); #endif } // Ensure WEL is 0, even if the erase failed. if (err == ESP_ERR_NOT_SUPPORTED) { err = chip->chip_drv->set_chip_write_protect(chip, true); } return err; } esp_err_t spi_flash_chip_generic_erase_sector(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } //The chip didn't accept the previous write command. Ignore this in preparationstage. if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) { chip->host->driver->erase_sector(chip->host, start_address); chip->busy = 1; #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT); #else err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->sector_erase_timeout); #endif } // Ensure WEL is 0, even if the erase failed. if (err == ESP_ERR_NOT_SUPPORTED) { err = chip->chip_drv->set_chip_write_protect(chip, true); } return err; } esp_err_t spi_flash_chip_generic_erase_block(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); } //The chip didn't accept the previous write command. Ignore this in preparationstage. if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) { chip->host->driver->erase_block(chip->host, start_address); chip->busy = 1; #ifdef CONFIG_SPI_FLASH_CHECK_ERASE_TIMEOUT_DISABLED err = chip->chip_drv->wait_idle(chip, ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT); #else err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->block_erase_timeout); #endif } // Ensure WEL is 0, even if the erase failed. if (err == ESP_ERR_NOT_SUPPORTED) { err = chip->chip_drv->set_chip_write_protect(chip, true); } return err; } esp_err_t spi_flash_chip_generic_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; const uint32_t page_size = chip->chip_drv->page_size; uint32_t align_address; uint8_t temp_buffer[64]; //spiflash hal max length of read no longer than 64byte uint32_t config_io_flags = 0; // Configure the host, and return err = chip->chip_drv->config_host_io_mode(chip, config_io_flags); if (err == ESP_ERR_NOT_SUPPORTED) { ESP_LOGE(TAG, "configure host io mode failed - unsupported"); return err; } while (err == ESP_OK && length > 0) { memset(temp_buffer, 0xFF, sizeof(temp_buffer)); uint32_t read_len = chip->host->driver->read_data_slicer(chip->host, address, length, &align_address, page_size); uint32_t left_off = address - align_address; uint32_t data_len = MIN(align_address + read_len, address + length) - address; err = chip->host->driver->read(chip->host, temp_buffer, align_address, read_len); memcpy(buffer, temp_buffer + left_off, data_len); address += data_len; buffer = (void *)((intptr_t)buffer + data_len); length = length - data_len; } return err; } esp_err_t spi_flash_chip_generic_page_program(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err; err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); //The chip didn't accept the previous write command. Ignore this in preparationstage. if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) { // Perform the actual Page Program command chip->host->driver->program_page(chip->host, buffer, address, length); chip->busy = 1; err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->page_program_timeout); } // Ensure WEL is 0, even if the page program failed. if (err == ESP_ERR_NOT_SUPPORTED) { err = chip->chip_drv->set_chip_write_protect(chip, true); } return err; } esp_err_t spi_flash_chip_generic_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; const uint32_t page_size = chip->chip_drv->page_size; uint32_t align_address; uint8_t temp_buffer[64]; //spiflash hal max length of write no longer than 64byte while (err == ESP_OK && length > 0) { memset(temp_buffer, 0xFF, sizeof(temp_buffer)); uint32_t page_len = chip->host->driver->write_data_slicer(chip->host, address, length, &align_address, page_size); uint32_t left_off = address - align_address; uint32_t write_len = MIN(align_address + page_len, address + length) - address; memcpy(temp_buffer + left_off, buffer, write_len); err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK && length > 0) { err = chip->chip_drv->program_page(chip, temp_buffer, align_address, page_len); address += write_len; buffer = (void *)((intptr_t)buffer + write_len); length -= write_len; } } // The caller is responsible to do host->driver->flush_cache, because this function may be // called in small pieces. Frequency call of flush cache will do harm to the performance. return err; } esp_err_t spi_flash_chip_generic_write_encrypted(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { spi_flash_encryption_t *esp_flash_encryption = &esp_flash_encryption_default; esp_err_t err = ESP_OK; // Encryption must happen on main flash. if (chip != esp_flash_default_chip) { return ESP_ERR_NOT_SUPPORTED; } /* Check if the buffer and length can qualify the requirments */ if (esp_flash_encryption->flash_encryption_check(address, length) != true) { return ESP_ERR_NOT_SUPPORTED; } const uint8_t *data_bytes = (const uint8_t *)buffer; esp_flash_encryption->flash_encryption_enable(); while (length > 0) { int block_size; /* Write the largest block if possible */ if (address % 64 == 0 && length >= 64) { block_size = 64; } else if (address % 32 == 0 && length >= 32) { block_size = 32; } else { block_size = 16; } // Prepare the flash chip (same time as AES operation, for performance) esp_flash_encryption->flash_encryption_data_prepare(address, (uint32_t *)data_bytes, block_size); err = chip->chip_drv->set_chip_write_protect(chip, false); if (err != ESP_OK) { return err; } // Waiting for encrypting buffer to finish and making result visible for SPI1 esp_flash_encryption->flash_encryption_done(); // Note: For encryption function, after write flash command is sent. The hardware will write the encrypted buffer // prepared in XTS_FLASH_ENCRYPTION register in function `flash_encryption_data_prepare`, instead of the origin // buffer named `data_bytes`. err = chip->chip_drv->write(chip, (uint32_t *)data_bytes, address, length); if (err != ESP_OK) { return err; } err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->page_program_timeout); if (err != ESP_OK) { return err; } // Note: we don't wait for idle status here, because this way // the AES peripheral can start encrypting the next // block while the SPI flash chip is busy completing the write esp_flash_encryption->flash_encryption_destroy(); length -= block_size; data_bytes += block_size; address += block_size; } esp_flash_encryption->flash_encryption_disable(); return err; } esp_err_t spi_flash_chip_generic_set_write_protect(esp_flash_t *chip, bool write_protect) { esp_err_t err = ESP_OK; err = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); //The chip didn't accept the previous write command. Ignore this in preparationstage. if (err == ESP_OK || err == ESP_ERR_NOT_SUPPORTED) { chip->host->driver->set_write_protect(chip->host, write_protect); } bool wp_read; err = chip->chip_drv->get_chip_write_protect(chip, &wp_read); if (err == ESP_OK && wp_read != write_protect) { // WREN flag has not been set! err = ESP_ERR_NOT_FOUND; } return err; } esp_err_t spi_flash_chip_generic_get_write_protect(esp_flash_t *chip, bool *out_write_protect) { esp_err_t err = ESP_OK; uint32_t status; assert(out_write_protect!=NULL); err = chip->chip_drv->read_reg(chip, SPI_FLASH_REG_STATUS, &status); if (err != ESP_OK) { return err; } *out_write_protect = ((status & SR_WREN) == 0); return err; } esp_err_t spi_flash_chip_generic_read_reg(esp_flash_t* chip, spi_flash_register_t reg_id, uint32_t* out_reg) { return chip->host->driver->read_status(chip->host, (uint8_t*)out_reg); } esp_err_t spi_flash_chip_generic_yield(esp_flash_t* chip, uint32_t wip) { esp_err_t err = ESP_OK; uint32_t flags = wip? 1: 0; //check_yield() and yield() impls should not issue suspend/resume if this flag is zero if (chip->os_func->check_yield) { uint32_t request; //According to the implementation, the check_yield() function may block, poll, delay or do nothing but return err = chip->os_func->check_yield(chip->os_func_data, flags, &request); if (err == ESP_OK) { if (err == ESP_OK && (request & SPI_FLASH_YIELD_REQ_YIELD) != 0) { uint32_t status; //According to the implementation, the yield() function may block until something happen err = chip->os_func->yield(chip->os_func_data, &status); } } else if (err == ESP_ERR_TIMEOUT) { err = ESP_OK; } else { abort(); } } return err; } esp_err_t spi_flash_chip_generic_wait_idle(esp_flash_t *chip, uint32_t timeout_us) { bool timeout_en = (timeout_us != ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT); if (timeout_us == ESP_FLASH_CHIP_GENERIC_NO_TIMEOUT) { timeout_us = 0;// In order to go into while } timeout_us++; // allow at least one pass before timeout, last one has no sleep cycle uint8_t status = 0; const int interval = CHIP_WAIT_IDLE_INTERVAL_US; while (timeout_us > 0) { while (!chip->host->driver->host_status(chip->host) && timeout_us > 0) { #if HOST_DELAY_INTERVAL_US > 0 if (timeout_us > 1) { int delay = MIN(HOST_DELAY_INTERVAL_US, timeout_us); chip->os_func->delay_us(chip->os_func_data, delay); timeout_us -= delay; } #endif } uint32_t read; esp_err_t err = chip->chip_drv->read_reg(chip, SPI_FLASH_REG_STATUS, &read); if (err != ESP_OK) { return err; } status = read; if ((status & SR_WIP) == 0) { // Verify write in progress is complete if (chip->busy == 1) { chip->busy = 0; if ((status & SR_WREN) != 0) { // The previous command is not accepted, leaving the WEL still set. return ESP_ERR_NOT_SUPPORTED; } } break; } if (timeout_us > 0 && interval > 0) { int delay = MIN(interval, timeout_us); chip->os_func->delay_us(chip->os_func_data, delay); if (timeout_en) { timeout_us -= delay; } } } return (timeout_us > 0) ? ESP_OK : ESP_ERR_TIMEOUT; } esp_err_t spi_flash_chip_generic_config_host_io_mode(esp_flash_t *chip, uint32_t flags) { uint32_t dummy_cyclelen_base; uint32_t addr_bitlen; uint32_t read_command; bool conf_required = false; esp_flash_io_mode_t read_mode = chip->read_mode; bool addr_32bit = (flags & SPI_FLASH_CONFIG_IO_MODE_32B_ADDR); switch (read_mode & 0xFFFF) { case SPI_FLASH_QIO: //for QIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = SPI_FLASH_QIO_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->qio_dummy_bitlen; read_command = (addr_32bit? CMD_FASTRD_QIO_4B: CMD_FASTRD_QIO); conf_required = true; break; case SPI_FLASH_QOUT: addr_bitlen = SPI_FLASH_QOUT_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->qout_dummy_bitlen; read_command = (addr_32bit? CMD_FASTRD_QUAD_4B: CMD_FASTRD_QUAD); break; case SPI_FLASH_DIO: //for DIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = SPI_FLASH_DIO_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->dio_dummy_bitlen; read_command = (addr_32bit? CMD_FASTRD_DIO_4B: CMD_FASTRD_DIO); conf_required = true; break; case SPI_FLASH_DOUT: addr_bitlen = SPI_FLASH_DOUT_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->dout_dummy_bitlen; read_command = (addr_32bit? CMD_FASTRD_DUAL_4B: CMD_FASTRD_DUAL); break; case SPI_FLASH_FASTRD: addr_bitlen = SPI_FLASH_FASTRD_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->fastrd_dummy_bitlen; read_command = (addr_32bit? CMD_FASTRD_4B: CMD_FASTRD); break; case SPI_FLASH_SLOWRD: addr_bitlen = SPI_FLASH_SLOWRD_ADDR_BITLEN; dummy_cyclelen_base = rom_flash_chip_dummy->slowrd_dummy_bitlen; read_command = (addr_32bit? CMD_READ_4B: CMD_READ); break; default: return ESP_ERR_FLASH_NOT_INITIALISED; } //For W25Q256 chip, the only difference between 4-Byte address command and 3-Byte version is the command value and the address bit length. if (addr_32bit) { addr_bitlen += 8; } if (conf_required) { read_mode |= SPI_FLASH_CONFIG_CONF_BITS; } return chip->host->driver->configure_host_io_mode(chip->host, read_command, addr_bitlen, dummy_cyclelen_base, read_mode); } esp_err_t spi_flash_chip_generic_get_io_mode(esp_flash_t *chip, esp_flash_io_mode_t* out_io_mode) { // On "generic" chips, this involves checking // bit 1 (QE) of RDSR2 (35h) result // (it works this way on GigaDevice & Fudan Micro chips, probably others...) const uint8_t BIT_QE = 1 << 1; uint32_t sr; esp_err_t ret = spi_flash_common_read_status_8b_rdsr2(chip, &sr); if (ret == ESP_OK) { *out_io_mode = ((sr & BIT_QE)? SPI_FLASH_QOUT: 0); } return ret; } esp_err_t spi_flash_chip_generic_set_io_mode(esp_flash_t *chip) { // On "generic" chips, this involves checking // bit 9 (QE) of RDSR (05h) result const uint32_t BIT_QE = 1 << 9; return spi_flash_common_set_io_mode(chip, spi_flash_common_write_status_16b_wrsr, spi_flash_common_read_status_16b_rdsr_rdsr2, BIT_QE); } #endif // CONFIG_SPI_FLASH_ROM_IMPL esp_err_t spi_flash_chip_generic_read_unique_id(esp_flash_t *chip, uint64_t* flash_unique_id) { uint64_t unique_id_buf = 0; spi_flash_trans_t transfer = { .command = CMD_RDUID, .miso_len = 8, .miso_data = ((uint8_t *)&unique_id_buf), .dummy_bitlen = 32, //RDUID command followed by 4 bytes (32 bits) of dummy clocks. }; esp_err_t err = chip->host->driver->common_command(chip->host, &transfer); if (unique_id_buf == 0 || unique_id_buf == UINT64_MAX) { ESP_EARLY_LOGE(TAG, "No response from device when trying to retrieve Unique ID\n"); *flash_unique_id = unique_id_buf; return ESP_ERR_NOT_SUPPORTED; } *flash_unique_id = __builtin_bswap64(unique_id_buf); return err; } esp_err_t spi_flash_chip_generic_read_unique_id_none(esp_flash_t *chip, uint64_t* flash_unique_id) { // For flash doesn't support read unique id. return ESP_ERR_NOT_SUPPORTED; } spi_flash_caps_t spi_flash_chip_generic_get_caps(esp_flash_t *chip) { // For generic part flash capability, take the XMC chip as reference. spi_flash_caps_t caps_flags = 0; // 32M-bits address support // flash suspend support // Only `XMC` support suspend for now. if (chip->chip_id >> 16 == 0x20) { caps_flags |= SPI_FLASH_CHIP_CAP_SUSPEND; } // flash read unique id. caps_flags |= SPI_FLASH_CHIP_CAP_UNIQUE_ID; return caps_flags; } static const char chip_name[] = "generic"; const spi_flash_chip_t esp_flash_chip_generic = { .name = chip_name, .timeout = &spi_flash_chip_generic_timeout, .probe = spi_flash_chip_generic_probe, .reset = spi_flash_chip_generic_reset, .detect_size = spi_flash_chip_generic_detect_size, .erase_chip = spi_flash_chip_generic_erase_chip, .erase_sector = spi_flash_chip_generic_erase_sector, .erase_block = spi_flash_chip_generic_erase_block, .sector_size = 4 * 1024, .block_erase_size = 64 * 1024, // TODO: figure out if generic chip-wide protection bits exist across some manufacturers .get_chip_write_protect = spi_flash_chip_generic_get_write_protect, .set_chip_write_protect = spi_flash_chip_generic_set_write_protect, // Chip write protection regions do not appear to be standardised // at all, this is implemented in chip-specific drivers only. .num_protectable_regions = 0, .protectable_regions = NULL, .get_protected_regions = NULL, .set_protected_regions = NULL, .read = spi_flash_chip_generic_read, .write = spi_flash_chip_generic_write, .program_page = spi_flash_chip_generic_page_program, .page_size = 256, .write_encrypted = spi_flash_chip_generic_write_encrypted, .wait_idle = spi_flash_chip_generic_wait_idle, .set_io_mode = spi_flash_chip_generic_set_io_mode, .get_io_mode = spi_flash_chip_generic_get_io_mode, .read_reg = spi_flash_chip_generic_read_reg, .yield = spi_flash_chip_generic_yield, .sus_setup = spi_flash_chip_generic_suspend_cmd_conf, .read_unique_id = spi_flash_chip_generic_read_unique_id, .get_chip_caps = spi_flash_chip_generic_get_caps, .config_host_io_mode = spi_flash_chip_generic_config_host_io_mode, }; #ifndef CONFIG_SPI_FLASH_ROM_IMPL /******************************************************************************* * Utility functions ******************************************************************************/ static esp_err_t spi_flash_common_read_qe_sr(esp_flash_t *chip, uint8_t qe_rdsr_command, uint8_t qe_sr_bitwidth, uint32_t *sr) { uint32_t sr_buf = 0; spi_flash_trans_t t = { .command = qe_rdsr_command, .miso_data = (uint8_t*) &sr_buf, .miso_len = qe_sr_bitwidth / 8, }; esp_err_t ret = chip->host->driver->common_command(chip->host, &t); *sr = sr_buf; return ret; } static esp_err_t spi_flash_common_write_qe_sr(esp_flash_t *chip, uint8_t qe_wrsr_command, uint8_t qe_sr_bitwidth, uint32_t qe) { spi_flash_trans_t t = { .command = qe_wrsr_command, .mosi_data = ((uint8_t*) &qe), .mosi_len = qe_sr_bitwidth / 8, .miso_len = 0, }; return chip->host->driver->common_command(chip->host, &t); } esp_err_t spi_flash_common_read_status_16b_rdsr_rdsr2(esp_flash_t* chip, uint32_t* out_sr) { uint32_t sr, sr2; esp_err_t ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, &sr2); if (ret == ESP_OK) { ret = spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, &sr); } if (ret == ESP_OK) { *out_sr = (sr & 0xff) | ((sr2 & 0xff) << 8); } return ret; } esp_err_t spi_flash_common_read_status_8b_rdsr2(esp_flash_t* chip, uint32_t* out_sr) { return spi_flash_common_read_qe_sr(chip, CMD_RDSR2, 8, out_sr); } esp_err_t spi_flash_common_read_status_8b_rdsr(esp_flash_t* chip, uint32_t* out_sr) { return spi_flash_common_read_qe_sr(chip, CMD_RDSR, 8, out_sr); } esp_err_t spi_flash_common_write_status_16b_wrsr(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 16, sr); } esp_err_t spi_flash_common_write_status_8b_wrsr(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR, 8, sr); } esp_err_t spi_flash_common_write_status_8b_wrsr2(esp_flash_t* chip, uint32_t sr) { return spi_flash_common_write_qe_sr(chip, CMD_WRSR2, 8, sr); } esp_err_t spi_flash_common_set_io_mode(esp_flash_t *chip, esp_flash_wrsr_func_t wrsr_func, esp_flash_rdsr_func_t rdsr_func, uint32_t qe_sr_bit) { esp_err_t ret = ESP_OK; const bool is_quad_mode = esp_flash_is_quad_mode(chip); bool update_config = false; /* * By default, we don't clear the QE bit even the flash mode is not QIO or QOUT. Force clearing * QE bit by the generic chip driver (command 01H with 2 bytes) may cause the output of some * chips (MXIC) no longer valid. * Enable this option when testing a new flash chip for clearing of QE. */ const bool force_check = false; bool need_check = is_quad_mode || force_check; uint32_t sr_update; if (need_check) { // Ensure quad modes are enabled, using the Quad Enable parameters supplied. uint32_t sr; ret = (*rdsr_func)(chip, &sr); if (ret != ESP_OK) { return ret; } ESP_EARLY_LOGD(TAG, "set_io_mode: status before 0x%x", sr); if (is_quad_mode) { sr_update = sr | qe_sr_bit; } else { sr_update = sr & (~qe_sr_bit); } ESP_EARLY_LOGV(TAG, "set_io_mode: status update 0x%x", sr_update); if (sr != sr_update) { update_config = true; } } if (update_config) { //some chips needs the write protect to be disabled before writing to Status Register chip->chip_drv->set_chip_write_protect(chip, false); ret = (*wrsr_func)(chip, sr_update); if (ret != ESP_OK) { chip->chip_drv->set_chip_write_protect(chip, true); return ret; } ret = chip->chip_drv->wait_idle(chip, chip->chip_drv->timeout->idle_timeout); if (ret == ESP_ERR_NOT_SUPPORTED) { chip->chip_drv->set_chip_write_protect(chip, true); } /* This function is the fallback approach, so we give it higher tolerance. * When the previous WRSR is rejected by the flash, * the result of this function is determined by the result -whether the value of RDSR meets the expectation. */ if (ret != ESP_OK && ret != ESP_ERR_NOT_SUPPORTED) { return ret; } /* Check the new QE bit has stayed set */ uint32_t sr; ret = (*rdsr_func)(chip, &sr); if (ret != ESP_OK) { return ret; } ESP_EARLY_LOGD(TAG, "set_io_mode: status after 0x%x", sr); if (sr != sr_update) { ret = ESP_ERR_FLASH_NO_RESPONSE; } } return ret; } #endif // !CONFIG_SPI_FLASH_ROM_IMPL esp_err_t spi_flash_chip_generic_suspend_cmd_conf(esp_flash_t *chip) { // Only XMC support auto-suspend if (chip->chip_id >> 16 != 0x20) { ESP_EARLY_LOGE(TAG, "The flash you use doesn't support auto suspend, only \'XMC\' is supported"); return ESP_ERR_NOT_SUPPORTED; } spi_flash_sus_cmd_conf sus_conf = { .sus_mask = 0x80, .cmd_rdsr = CMD_RDSR2, .sus_cmd = CMD_SUSPEND, .res_cmd = CMD_RESUME, }; return chip->host->driver->sus_setup(chip->host, &sus_conf); }