/* * SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "esp32c3/rom/ets_sys.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "hal/clk_tree_ll.h" #include "hal/rtc_cntl_ll.h" #include "soc/timer_group_reg.h" #include "esp_rom_sys.h" /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0. * This feature counts the number of XTAL clock cycles within a given number of * RTC_SLOW_CLK cycles. * * Slow clock calibration feature has two modes of operation: one-off and cycling. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is * enabled using TIMG_RTC_CALI_START bit. */ /** * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio * @param cal_clk which clock to calibrate * @param slowclk_cycles number of slow clock cycles to count * @return number of XTAL clock cycles within the given number of slow clock cycles */ uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { /* On ESP32C3, choosing RTC_CAL_RTC_MUX results in calibration of * the 150k RTC clock regardless of the currenlty selected SLOW_CLK. * On the ESP32, it used the currently selected SLOW_CLK. * The following code emulates ESP32 behavior: */ if (cal_clk == RTC_CAL_RTC_MUX) { soc_rtc_slow_clk_src_t slow_clk_src = rtc_clk_slow_src_get(); if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) { cal_clk = RTC_CAL_32K_XTAL; } else if (slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) { cal_clk = RTC_CAL_8MD256; } } else if (cal_clk == RTC_CAL_INTERNAL_OSC) { cal_clk = RTC_CAL_RTC_MUX; } /* Enable requested clock (150k clock is always on) */ bool dig_32k_xtal_enabled = clk_ll_xtal32k_digi_is_enabled(); if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_enabled) { clk_ll_xtal32k_digi_enable(); } bool rc_fast_enabled = clk_ll_rc_fast_is_enabled(); bool rc_fast_d256_enabled = clk_ll_rc_fast_d256_is_enabled(); if (cal_clk == RTC_CAL_8MD256) { rtc_clk_8m_enable(true, true); clk_ll_rc_fast_d256_digi_enable(); } /* There may be another calibration process already running during we call this function, * so we should wait the last process is done. */ if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) { /** * Set a small timeout threshold to accelerate the generation of timeout. * The internal circuit will be reset when the timeout occurs and will not affect the next calibration. */ REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, 1); while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) && !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)); } /* Prepare calibration */ REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk); CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING); REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles); /* Figure out how long to wait for calibration to finish */ /* Set timeout reg and expect time delay*/ uint32_t expected_freq; if (cal_clk == RTC_CAL_32K_XTAL) { REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles)); expected_freq = SOC_CLK_XTAL32K_FREQ_APPROX; } else if (cal_clk == RTC_CAL_8MD256) { REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles)); expected_freq = SOC_CLK_RC_FAST_D256_FREQ_APPROX; } else { REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles)); expected_freq = SOC_CLK_RC_SLOW_FREQ_APPROX; } uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq); /* Start calibration */ CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START); SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START); /* Wait for calibration to finish up to another us_time_estimate */ esp_rom_delay_us(us_time_estimate); uint32_t cal_val; while (true) { if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) { cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE); break; } if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) { cal_val = 0; break; } } CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START); /* if dig_32k_xtal was originally off and enabled due to calibration, then set back to off state */ if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_enabled) { clk_ll_xtal32k_digi_disable(); } if (cal_clk == RTC_CAL_8MD256) { clk_ll_rc_fast_d256_digi_disable(); rtc_clk_8m_enable(rc_fast_enabled, rc_fast_d256_enabled); } return cal_val; } uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles); uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles; uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX); return ratio; } static bool rtc_clk_cal_32k_valid(rtc_xtal_freq_t xtal_freq, uint32_t slowclk_cycles, uint64_t actual_xtal_cycles) { uint64_t expected_xtal_cycles = (xtal_freq * 1000000ULL * slowclk_cycles) >> 15; // xtal_freq(hz) * slowclk_cycles / 32768 uint64_t delta = expected_xtal_cycles / 2000; // 5/10000 return (actual_xtal_cycles >= (expected_xtal_cycles - delta)) && (actual_xtal_cycles <= (expected_xtal_cycles + delta)); } uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get(); uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles); if ((cal_clk == RTC_CAL_32K_XTAL) && !rtc_clk_cal_32k_valid(xtal_freq, slowclk_cycles, xtal_cycles)) { return 0; } uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles; uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider; uint32_t period = (uint32_t)(period_64 & UINT32_MAX); return period; } uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period) { /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days. * TODO: fix overflow. */ return (time_in_us << RTC_CLK_CAL_FRACT) / period; } uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period) { return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT; } uint64_t rtc_time_get(void) { return rtc_cntl_ll_get_rtc_time(); } uint64_t rtc_light_slp_time_get(void) { uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG); t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32; uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG); t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32; return (t_wake - t_slp); } uint64_t rtc_deep_slp_time_get(void) { uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG); t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32; uint64_t t_wake = rtc_time_get(); return (t_wake - t_slp); } void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more { SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE); while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) { esp_rom_delay_us(1); } } uint32_t rtc_clk_freq_cal(uint32_t cal_val) { if (cal_val == 0) { return 0; // cal_val will be denominator, return 0 as the symbol of failure. } return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val; }