spi_flash: Use per-chip flash_ops files for legacy API

Looks like when ESP32-S2 Beta support was merged, the separate files
were dropped by accident.
pull/5222/head
Angus Gratton 2020-04-16 21:31:13 +10:00 zatwierdzone przez Felipe Neves
rodzic 95bc186846
commit dbdce93d23
4 zmienionych plików z 11 dodań i 126 usunięć

Wyświetl plik

@ -15,6 +15,7 @@ else()
"cache_utils.c" "cache_utils.c"
"flash_mmap.c" "flash_mmap.c"
"flash_ops.c" "flash_ops.c"
"${IDF_TARGET}/flash_ops_${IDF_TARGET}.c"
) )
set(srcs set(srcs
"partition.c") "partition.c")

Wyświetl plik

@ -36,6 +36,10 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
{ {
const uint8_t *ssrc = (const uint8_t *)src; const uint8_t *ssrc = (const uint8_t *)src;
esp_rom_spiflash_result_t rc; esp_rom_spiflash_result_t rc;
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
rc = esp_rom_spiflash_unlock(); rc = esp_rom_spiflash_unlock();
if (rc != ESP_ROM_SPIFLASH_RESULT_OK) { if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
return rc; return rc;

Wyświetl plik

@ -28,6 +28,9 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
const spi_flash_guard_funcs_t *ops = spi_flash_guard_get(); const spi_flash_guard_funcs_t *ops = spi_flash_guard_get();
esp_rom_spiflash_result_t rc; esp_rom_spiflash_result_t rc;
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
if (!esp_ptr_internal(src)) { if (!esp_ptr_internal(src)) {
uint8_t block[128]; // Need to buffer in RAM as we write uint8_t block[128]; // Need to buffer in RAM as we write
while (size > 0) { while (size > 0) {

Wyświetl plik

@ -45,6 +45,7 @@
#include "esp_flash.h" #include "esp_flash.h"
#include "esp_attr.h" #include "esp_attr.h"
esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size);
/* bytes erased by SPIEraseBlock() ROM function */ /* bytes erased by SPIEraseBlock() ROM function */
#define BLOCK_ERASE_SIZE 65536 #define BLOCK_ERASE_SIZE 65536
@ -434,58 +435,6 @@ out:
#endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
static IRAM_ATTR esp_err_t spi_flash_write_encrypted_in_rows(size_t dest_addr, const uint8_t *src, size_t size)
{
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
/* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
so copy to a temporary buffer - 32 bytes at a time.
Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
data to encrypt, and each row is two 16 byte AES blocks
that share a key (as derived from flash address).
*/
esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
WORD_ALIGNED_ATTR uint8_t encrypt_buf[32];
uint32_t row_size;
for (size_t i = 0; i < size; i += row_size) {
uint32_t row_addr = dest_addr + i;
if (i == 0 && (row_addr % 32) != 0) {
/* writing to second block of a 32 byte row */
row_size = 16;
row_addr -= 16;
/* copy to second block in buffer */
memcpy(encrypt_buf + 16, src + i, 16);
/* decrypt the first block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
} else if (size - i == 16) {
/* 16 bytes left, is first block of a 32 byte row */
row_size = 16;
/* copy to first block in buffer */
memcpy(encrypt_buf, src + i, 16);
/* decrypt the second block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
} else {
/* Writing a full 32 byte row (2 blocks) */
row_size = 32;
memcpy(encrypt_buf, src + i, 32);
}
spi_flash_guard_start();
rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
spi_flash_guard_end();
if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
break;
}
}
bzero(encrypt_buf, sizeof(encrypt_buf));
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size) esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
{ {
esp_err_t err = ESP_OK; esp_err_t err = ESP_OK;
@ -505,7 +454,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
} }
#ifndef CONFIG_SPI_FLASH_VERIFY_WRITE #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
err = spi_flash_write_encrypted_in_rows(dest_addr, (const uint8_t*)src, size); err = spi_flash_write_encrypted_chip(dest_addr, src, size);
COUNTER_ADD_BYTES(write, size); COUNTER_ADD_BYTES(write, size);
spi_flash_guard_start(); spi_flash_guard_start();
spi_flash_check_and_flush_cache(dest_addr, size); spi_flash_check_and_flush_cache(dest_addr, size);
@ -535,7 +484,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
} }
#endif #endif
err = spi_flash_write_encrypted_in_rows(dest_addr + i, src + i, read_len); err = spi_flash_write_encrypted_chip(dest_addr + i, src + i, read_len);
if (err != ESP_OK) { if (err != ESP_OK) {
break; break;
} }
@ -795,78 +744,6 @@ void spi_flash_dump_counters(void)
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
#if CONFIG_IDF_TARGET_ESP32S2
#define SPICACHE SPIMEM0
#define SPIFLASH SPIMEM1
#define FLASH_WRAP_CMD 0x77
esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode)
{
uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val;
uint32_t reg_bkp_usr = SPIFLASH.user.val;
SPIFLASH.user.fwrite_dio = 0;
SPIFLASH.user.fwrite_dual = 0;
SPIFLASH.user.fwrite_qio = 1;
SPIFLASH.user.fwrite_quad = 0;
SPIFLASH.ctrl.fcmd_dual = 0;
SPIFLASH.ctrl.fcmd_quad = 0;
SPIFLASH.user.usr_dummy = 0;
SPIFLASH.user.usr_addr = 1;
SPIFLASH.user.usr_command = 1;
SPIFLASH.user2.usr_command_bitlen = 7;
SPIFLASH.user2.usr_command_value = FLASH_WRAP_CMD;
SPIFLASH.user1.usr_addr_bitlen = 23;
SPIFLASH.addr = 0;
SPIFLASH.user.usr_miso = 0;
SPIFLASH.user.usr_mosi = 1;
SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7;
SPIFLASH.data_buf[0] = (uint32_t) mode << 4;;
SPIFLASH.cmd.usr = 1;
while(SPIFLASH.cmd.usr != 0)
{ }
SPIFLASH.ctrl.val = reg_bkp_ctrl;
SPIFLASH.user.val = reg_bkp_usr;
return ESP_OK;
}
esp_err_t spi_flash_enable_wrap(uint32_t wrap_size)
{
switch(wrap_size) {
case 8:
return spi_flash_wrap_set(FLASH_WRAP_MODE_8B);
case 16:
return spi_flash_wrap_set(FLASH_WRAP_MODE_16B);
case 32:
return spi_flash_wrap_set(FLASH_WRAP_MODE_32B);
case 64:
return spi_flash_wrap_set(FLASH_WRAP_MODE_64B);
default:
return ESP_FAIL;
}
}
void spi_flash_disable_wrap(void)
{
spi_flash_wrap_set(FLASH_WRAP_MODE_DISABLE);
}
bool spi_flash_support_wrap_size(uint32_t wrap_size)
{
if (!REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FREAD_QIO) || !REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FASTRD_MODE)){
return ESP_FAIL;
}
switch(wrap_size) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
#endif
#if defined(CONFIG_SPI_FLASH_USE_LEGACY_IMPL) && defined(CONFIG_IDF_TARGET_ESP32S2) #if defined(CONFIG_SPI_FLASH_USE_LEGACY_IMPL) && defined(CONFIG_IDF_TARGET_ESP32S2)
// TODO esp32s2: Remove once ESP32S2 has new SPI Flash API support // TODO esp32s2: Remove once ESP32S2 has new SPI Flash API support
esp_flash_t *esp_flash_default_chip = NULL; esp_flash_t *esp_flash_default_chip = NULL;