Merge branch 'bugfix/fix_adc_io_init_bug' into 'master'

driver(adc): fix adc io init bug

Closes IDF-1541

See merge request espressif/esp-idf!8301
pull/5307/head
Wang Jia Lin 2020-05-13 16:35:58 +08:00
commit cf32e4fc22
8 zmienionych plików z 333 dodań i 66 usunięć

Wyświetl plik

@ -161,7 +161,8 @@ esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
}
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
return ESP_OK;
}
@ -397,7 +398,8 @@ static esp_err_t adc2_pad_init(adc2_channel_t channel)
ADC_CHECK_RET(adc2_pad_get_io_num(channel, &gpio_num));
ADC_CHECK_RET(rtc_gpio_init(gpio_num));
ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
ADC_CHECK_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num));
ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num));
return ESP_OK;
}

Wyświetl plik

@ -1,3 +1,3 @@
idf_component_register(SRC_DIRS . param_test touch_sensor_test adc_dma_test dac_dma_test
PRIV_INCLUDE_DIRS include param_test/include
PRIV_INCLUDE_DIRS include param_test/include touch_sensor_test/include
PRIV_REQUIRES unity test_utils driver nvs_flash esp_serial_slave_link infrared_tools)

Wyświetl plik

@ -62,7 +62,9 @@ static void test_pxp_deinit_io(void)
TEST_ASSERT_EQUAL_UINT32(REG_GET_FIELD(SENS_SARDATE_REG, SENS_SAR_DATE), SENS.sardate.sar_date); \
TEST_ASSERT_EQUAL_UINT32(REG_GET_FIELD(RTC_IO_DATE_REG, RTC_IO_IO_DATE), RTCIO.date.date); \
})
#define TEST_ADC_TRIGGER_INTERVAL_DEFAULT (40)
/** Sample rate = APB_CLK(80 MHz) / CLK_DIV / TRIGGER_INTERVAL */
#define TEST_ADC_TRIGGER_INTERVAL_DEFAULT (80)
#define TEST_ADC_DIGI_CLK_DIV_DEFAULT (40)
#define TEST_ADC_COUNT_NUM (10)
#define TEST_ADC_CHANNEL (10)
static adc_channel_t adc_list[TEST_ADC_CHANNEL] = {
@ -78,13 +80,7 @@ static adc_channel_t adc_list[TEST_ADC_CHANNEL] = {
ADC_CHANNEL_9,
};
/* For ESP32S2, it should use same atten, or, it will have error. */
// #define TEST_ADC_ATTEN_DEFAULT (ADC_ATTEN_11db)
static adc_atten_t adc_atten[ADC_ATTEN_MAX] = {
ADC_ATTEN_DB_0,
ADC_ATTEN_DB_2_5,
ADC_ATTEN_DB_6,
ADC_ATTEN_DB_11
};
#define TEST_ADC_ATTEN_DEFAULT (ADC_ATTEN_11db)
/*******************************************/
/** SPI DMA INIT CODE */
/*******************************************/
@ -102,12 +98,12 @@ typedef struct dma_link {
struct dma_link *pnext; //point to the next dma linker, if this link is the last one, set it NULL.
} dma_link_t;
/* Work mode.
* sigle: eof_num;
* single: eof_num;
* double: SAR_EOF_NUMBER/2;
* alter: eof_num;
* */
#define SAR_SIMPLE_NUM 64
#define SAR_DMA_DATA_SIZE(unit, sample_num) (SAR_EOF_NUMBER(unit, sample_num) * 2) // 1 adc -> 2 byte
#define SAR_SIMPLE_NUM 64 // Set sample number of enabled unit.
#define SAR_DMA_DATA_SIZE(unit, sample_num) (SAR_EOF_NUMBER(unit, sample_num)) // 1 adc -> 2 byte data -> 2 link buf
#define SAR_EOF_NUMBER(unit, sample_num) ((sample_num) * (unit))
#define SAR_MEAS_LIMIT_NUM(unit, sample_num) (SAR_EOF_NUMBER(unit, sample_num) / unit)
@ -124,11 +120,12 @@ static void dma_linker_init(adc_unit_t adc, bool is_loop)
dma1.des.length = 0; //For input buffer, this field is no use.
dma1.buf = &link_buf[0][0];
dma2.des.eof = 1;
dma2.des.owner = 1;
if (is_loop) {
dma2.des.eof = 0;
dma2.pnext = &dma1;
} else {
dma2.des.eof = 1;
dma2.pnext = NULL;
}
dma2.des.size = SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM);
@ -142,8 +139,10 @@ static void dma_linker_init(adc_unit_t adc, bool is_loop)
REG_CLR_BIT(DPORT_PERIP_RST_EN_REG, DPORT_SPI3_RST_M);
uint32_t dma_pointer = (uint32_t)&dma1;
SET_PERI_REG_BITS(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_ADDR, dma_pointer, 0);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
REG_SET_BIT(SPI_DMA_INT_ENA_REG(3), SPI_IN_SUC_EOF_INT_ENA);
printf("reg addr 0x%08x 0x%08x \n", SPI_DMA_IN_LINK_REG(3), dma_pointer);
}
@ -152,10 +151,8 @@ static void dma_linker_restart(void)
{
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_RESTART_M);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_RESTART_M);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
REG_CLR_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_STOP);
REG_SET_BIT(SPI_DMA_IN_LINK_REG(3), SPI_INLINK_START);
adc_digi_reset();
}
@ -176,6 +173,7 @@ static void adc_fake_tie_middle(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_en(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_en(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(0, adc_list[i]), RTC_GPIO_MODE_INPUT_ONLY));
}
}
if (adc & ADC_UNIT_2) {
@ -183,6 +181,7 @@ static void adc_fake_tie_middle(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_en(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_en(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(1, adc_list[i]), RTC_GPIO_MODE_INPUT_ONLY));
}
}
vTaskDelay(10 / portTICK_RATE_MS); // To wait stable of IO.
@ -195,6 +194,8 @@ static void adc_fake_tie_high(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_en(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_dis(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(0, adc_list[i]), RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(ADC_GET_IO_NUM(0, adc_list[i]), 1));
}
}
if (adc & ADC_UNIT_2) {
@ -202,6 +203,8 @@ static void adc_fake_tie_high(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_en(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_dis(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(1, adc_list[i]), RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(ADC_GET_IO_NUM(1, adc_list[i]), 1));
}
}
vTaskDelay(10 / portTICK_RATE_MS); // To wait stable of IO.
@ -214,6 +217,8 @@ static void adc_fake_tie_low(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_dis(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_en(ADC_GET_IO_NUM(0, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(0, adc_list[i]), RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(ADC_GET_IO_NUM(0, adc_list[i]), 0));
}
}
if (adc & ADC_UNIT_2) {
@ -221,6 +226,8 @@ static void adc_fake_tie_low(adc_unit_t adc)
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
TEST_ESP_OK(rtc_gpio_pullup_dis(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_pulldown_en(ADC_GET_IO_NUM(1, adc_list[i])));
TEST_ESP_OK(rtc_gpio_set_direction(ADC_GET_IO_NUM(1, adc_list[i]), RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(ADC_GET_IO_NUM(1, adc_list[i]), 0));
}
}
vTaskDelay(10 / portTICK_RATE_MS); // To wait stable of IO.
@ -243,7 +250,7 @@ static void adc_io_normal(adc_unit_t adc)
#define DEBUG_CHECK_ENABLE 0
#define DEBUG_PRINT_ENABLE 1
#define DEBUG_CHECK_ERROR 100
#define DEBUG_CHECK_ERROR 10
static esp_err_t adc_dma_data_check(adc_unit_t adc, int ideal_level)
{
@ -253,8 +260,8 @@ static esp_err_t adc_dma_data_check(adc_unit_t adc, int ideal_level)
#endif
for (int cnt = 0; cnt < 2; cnt++) {
ets_printf("\n[%s] link_buf[%d]: \n", __func__, cnt % 2);
for (int i = 0; i < SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM); i++, i++) {
uint16_t h = link_buf[cnt % 2][i + 1], l = link_buf[cnt % 2][i];
for (int i = 0; i < SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM); i += 2) {
uint8_t h = link_buf[cnt % 2][i + 1], l = link_buf[cnt % 2][i];
uint16_t temp = (h << 8 | l);
adc_digi_output_data_t *data = (adc_digi_output_data_t *)&temp;
@ -266,21 +273,26 @@ static esp_err_t adc_dma_data_check(adc_unit_t adc, int ideal_level)
ets_printf("[%d_%d_%04x] ", data->type2.unit, data->type2.channel, data->type2.data);
#endif
#if DEBUG_CHECK_ENABLE
TEST_ASSERT_NOT_EQUAL(unit_old, data->type2.unit);
unit_old = data->type2.unit;
if (data->type2.channel > ADC_CHANNEL_MAX) {
printf("Data invalid [%d]\n", data->type2.channel);
continue;
if (ideal_level >= 0) {
TEST_ASSERT_NOT_EQUAL(unit_old, data->type2.unit);
unit_old = data->type2.unit;
if (data->type2.channel > ADC_CHANNEL_MAX) {
printf("Data invalid [%d]\n", data->type2.channel);
continue;
}
int cur_ch = ((ch_cnt++ / 2) % TEST_ADC_CHANNEL);
TEST_ASSERT_EQUAL( data->type2.channel, adc_list[cur_ch] );
}
int cur_ch = ((ch_cnt++ / 2) % TEST_ADC_CHANNEL);
TEST_ASSERT_EQUAL( data->type2.channel, adc_list[cur_ch] );
/*Check data channel unit*/
if (ideal_level == 1) {
if (ideal_level == 1) { // high level
TEST_ASSERT_INT_WITHIN( DEBUG_CHECK_ERROR, 0x7FF, data->type2.data );
} else if (ideal_level == 0) {
} else if (ideal_level == 0) { // low level
TEST_ASSERT_INT_WITHIN( DEBUG_CHECK_ERROR, 0, data->type2.data );
} else if (ideal_level == 2) { // middle level
TEST_ASSERT_INT_WITHIN( 300, 1100, data->type1.data );
} else if (ideal_level == 3) { // normal level
} else {
// middle vol
// no check
}
#endif
} else { //ADC_ENCODE_12BIT
@ -292,22 +304,19 @@ static esp_err_t adc_dma_data_check(adc_unit_t adc, int ideal_level)
#endif
#if DEBUG_CHECK_ENABLE
/*Check data channel */
if (ideal_level == 1) {
if (data->type1.data != 0XFFF) {
return ESP_FAIL;
}
} else if (ideal_level == 0) {
if (data->type1.data != 0) {
return ESP_FAIL;
}
if (ideal_level == 1) { // high level
TEST_ASSERT_INT_WITHIN( DEBUG_CHECK_ERROR, 0XFFF, data->type1.data );
} else if (ideal_level == 0) { // low level
TEST_ASSERT_INT_WITHIN( DEBUG_CHECK_ERROR, 0, data->type1.data );
} else if (ideal_level == 2) { // middle level
TEST_ASSERT_INT_WITHIN( 300, 2200, data->type1.data );
} else if (ideal_level == 3) { // normal level
} else {
if (data->type1.data == 0 || data->type1.data == 0XFFF) {
return ESP_FAIL;
}
// no check
}
int cur_ch = ((i / 2) % TEST_ADC_CHANNEL);
if (data->type1.channel != adc_list[cur_ch] ) {
return ESP_FAIL;
if (ideal_level >= 0) {
int cur_ch = ((ch_cnt++) % TEST_ADC_CHANNEL);
TEST_ASSERT_EQUAL( adc_list[cur_ch], data->type1.channel );
}
#endif
}
@ -323,41 +332,37 @@ static esp_err_t adc_dma_data_multi_st_check(adc_unit_t adc)
{
ESP_LOGI(TAG, "adc IO fake tie low, test ...");
adc_fake_tie_low(adc);
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
TEST_ESP_OK( adc_digi_start() );
while (0 == REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST)) {};
while (REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST) == 0) {};
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
if ( ESP_OK != adc_dma_data_check(adc, 0)) {
TEST_ESP_OK( adc_digi_stop() );
if ( adc_dma_data_check(adc, 0) != ESP_OK ) {
return ESP_FAIL;
}
ESP_LOGI(TAG, "adc IO fake tie high, test ...");
adc_fake_tie_high(adc);
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
TEST_ESP_OK( adc_digi_start() );
while (0 == REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST)) {};
while (REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST) == 0) {};
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
if ( ESP_OK != adc_dma_data_check(adc, 1)) {
TEST_ESP_OK( adc_digi_stop() );
if ( adc_dma_data_check(adc, 1) != ESP_OK ) {
return ESP_FAIL;
}
ESP_LOGI(TAG, "adc IO fake tie middle, test ...");
adc_fake_tie_middle(adc);
TEST_ESP_OK( adc_digi_stop() );
dma_linker_restart();
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
TEST_ESP_OK( adc_digi_start() );
while (0 == REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST)) {};
while (REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST) == 0) {};
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
if ( ESP_OK != adc_dma_data_check(adc, 2)) {
TEST_ESP_OK( adc_digi_stop() );
if ( adc_dma_data_check(adc, 2) != ESP_OK ) {
return ESP_FAIL;
}
TEST_ESP_OK( adc_digi_stop() );
adc_io_normal(adc);
return ESP_OK;
@ -429,7 +434,7 @@ int test_adc_dig_dma_single_unit(adc_unit_t adc)
.conv_limit_num = 0,
.interval = TEST_ADC_TRIGGER_INTERVAL_DEFAULT,
.dig_clk.use_apll = 0, // APB clk
.dig_clk.div_num = 2, // 80 MHz / 160 = 500 KHz
.dig_clk.div_num = TEST_ADC_DIGI_CLK_DIV_DEFAULT, // 80 MHz / 2 = 40 MHz
.dig_clk.div_b = 1,
.dig_clk.div_a = 1,
.dma_eof_num = SAR_EOF_NUMBER((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
@ -441,7 +446,7 @@ int test_adc_dig_dma_single_unit(adc_unit_t adc)
config.adc1_pattern_len = TEST_ADC_CHANNEL;
config.adc1_pattern = adc1_patt;
for (int i = 0; i < TEST_ADC_CHANNEL; i++) {
adc1_patt[i].atten = adc_atten[i%ADC_ATTEN_MAX];
adc1_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc1_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
}
@ -450,7 +455,7 @@ int test_adc_dig_dma_single_unit(adc_unit_t adc)
config.adc2_pattern_len = TEST_ADC_CHANNEL;
config.adc2_pattern = adc2_patt;
for (int i = 0; i < TEST_ADC_CHANNEL; i++) {
adc2_patt[i].atten = adc_atten[i%ADC_ATTEN_MAX];
adc2_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc2_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
}
@ -473,10 +478,19 @@ int test_adc_dig_dma_single_unit(adc_unit_t adc)
dma_linker_init(adc, false);
TEST_ESP_OK( adc_check_patt_table(adc, TEST_ADC_CHANNEL, adc_list[TEST_ADC_CHANNEL - 1]) );
ESP_LOGI(TAG, "adc IO normal, test ...");
dma_linker_restart();
TEST_ESP_OK( adc_digi_start() );
while (REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST) == 0) {};
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
TEST_ESP_OK( adc_digi_stop() );
if ( adc_dma_data_check(adc, -1) != ESP_OK ) {
return ESP_FAIL;
}
adc_dma_data_multi_st_check(adc);
TEST_ESP_OK( adc_digi_deinit() );
return 0;
}
@ -491,4 +505,166 @@ TEST_CASE("ADC DMA single read", "[ADC]")
test_adc_dig_dma_single_unit(ADC_UNIT_2);
}
#include "touch_scope.h"
/**
* 0: ADC1 channels raw data debug.
* 1: ADC2 channels raw data debug.
*/
#define SCOPE_DEBUG_TYPE 0
#define SCOPE_DEBUG_CHANNEL_MAX (10)
#define SCOPE_DEBUG_ENABLE (0)
#define SCOPE_UART_BUADRATE (256000)
#define SCOPE_DEBUG_FREQ_MS (50)
#define SCOPE_OUTPUT_UART (0)
int test_adc_dig_scope_debug_unit(adc_unit_t adc)
{
ESP_LOGI(TAG, " >> %s << ", __func__);
ESP_LOGI(TAG, " >> adc unit: %x << ", adc);
TEST_ESP_OK( adc_digi_init() );
/* arbiter config */
adc_arbiter_t arb_cfg = {
.mode = ADC_ARB_MODE_FIX,
.dig_pri = 0,
.pwdet_pri = 2,
.rtc_pri = 1,
};
TEST_ESP_OK( adc_arbiter_config(ADC_UNIT_2, &arb_cfg) ); // If you want use force
adc_digi_config_t config = {
.conv_limit_en = false,
.conv_limit_num = 0,
.interval = TEST_ADC_TRIGGER_INTERVAL_DEFAULT,
.dig_clk.use_apll = 0, // APB clk
.dig_clk.div_num = TEST_ADC_DIGI_CLK_DIV_DEFAULT, // 80 MHz / 80 = 1 MHz
.dig_clk.div_b = 1,
.dig_clk.div_a = 1,
.dma_eof_num = SAR_EOF_NUMBER((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM),
};
/* Config pattern table */
adc_digi_pattern_table_t adc1_patt[TEST_ADC_CHANNEL] = {0};
adc_digi_pattern_table_t adc2_patt[TEST_ADC_CHANNEL] = {0};
if (adc & ADC_UNIT_1) {
config.adc1_pattern_len = TEST_ADC_CHANNEL;
config.adc1_pattern = adc1_patt;
for (int i = 0; i < TEST_ADC_CHANNEL; i++) {
adc1_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc1_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_1, adc_list[i]);
}
}
if (adc & ADC_UNIT_2) {
config.adc2_pattern_len = TEST_ADC_CHANNEL;
config.adc2_pattern = adc2_patt;
for (int i = 0; i < TEST_ADC_CHANNEL; i++) {
adc2_patt[i].atten = TEST_ADC_ATTEN_DEFAULT;
adc2_patt[i].channel = adc_list[i];
adc_gpio_init(ADC_UNIT_2, adc_list[i]);
}
}
if (adc == ADC_UNIT_1) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_1;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_2) {
config.conv_mode = ADC_CONV_SINGLE_UNIT_2;
config.format = ADC_DIGI_FORMAT_12BIT;
} else if (adc == ADC_UNIT_BOTH) {
config.conv_mode = ADC_CONV_BOTH_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
} else if (adc == ADC_UNIT_ALTER) {
config.conv_mode = ADC_CONV_ALTER_UNIT;
config.format = ADC_DIGI_FORMAT_11BIT;
}
TEST_ESP_OK( adc_digi_controller_config(&config) );
dma_linker_init(adc, false);
TEST_ESP_OK( adc_check_patt_table(adc, TEST_ADC_CHANNEL, adc_list[TEST_ADC_CHANNEL - 1]) );
ESP_LOGI(TAG, "adc IO fake tie middle, test ...");
adc_fake_tie_middle(adc);
TEST_ESP_OK( adc_digi_start() );
return 0;
}
static void scope_output(int adc_num, int channel, int data)
{
static float scope_temp[TEST_ADC_CHANNEL] = {0}; // max scope channel is 10.
static int scope_cnt = 0;
/** can replace by uart log.*/
#if SCOPE_OUTPUT_UART
static int i = 0;
if (i++ % 8 == 0) {
ets_printf("\n");
}
ets_printf("[%d_%d_%04x] ", adc_num, channel, data);
return;
#endif
#if SCOPE_DEBUG_TYPE == 0
if (adc_num != 0) {
return;
}
#elif SCOPE_DEBUG_TYPE == 1
if (adc_num != 1) {
return;
}
#endif
/* adc Read */
if (adc_num == 0) {
scope_temp[channel] = data;
if (++scope_cnt >= TEST_ADC_CHANNEL) {
scope_cnt = 0;
test_tp_print_to_scope(scope_temp, TEST_ADC_CHANNEL);
vTaskDelay(SCOPE_DEBUG_FREQ_MS / portTICK_RATE_MS);
for (int i=0; i<TEST_ADC_CHANNEL; i++) {
scope_temp[i] = 0;
}
}
}
}
/**
* Manual test: Capture ADC-DMA data and display it on the serial oscilloscope. Used to observe the stability of the data.
* Use step:
* 1. Run this test from the unit test app.
* 2. Use `ESP-Tuning Tool`(download from `www.espressif.com`) to capture.
* 3. The readings of multiple channels will be displayed on the tool.
*/
TEST_CASE("test_adc_digi_slope_debug", "[adc_dma][ignore]")
{
test_tp_scope_debug_init(0, -1, -1, SCOPE_UART_BUADRATE);
adc_unit_t adc = ADC_UNIT_1;
test_adc_dig_scope_debug_unit(adc);
while (1) {
REG_SET_BIT(SPI_DMA_INT_CLR_REG(3), SPI_IN_SUC_EOF_INT_CLR);
dma_linker_restart();
TEST_ESP_OK( adc_digi_start() );
while (REG_GET_BIT(SPI_DMA_INT_ST_REG(3), SPI_IN_SUC_EOF_INT_ST) == 0) {};
TEST_ESP_OK( adc_digi_stop() );
for (int cnt = 0; cnt < 2; cnt++) {
for (int i = 0; i < SAR_DMA_DATA_SIZE((adc > 2) ? 2 : 1, SAR_SIMPLE_NUM); i += 2) {
uint8_t h = link_buf[cnt % 2][i + 1], l = link_buf[cnt % 2][i];
uint16_t temp = (h << 8 | l);
adc_digi_output_data_t *data = (adc_digi_output_data_t *)&temp;
if (adc > ADC_UNIT_2) { //ADC_ENCODE_11BIT
scope_output(data->type2.unit, data->type2.channel, data->type2.data);
} else { //ADC_ENCODE_12BIT
if (adc == ADC_UNIT_1) {
scope_output(0, data->type1.channel, data->type1.data);
} else if (adc == ADC_UNIT_2) {
scope_output(1, data->type1.channel, data->type1.data);
}
}
link_buf[cnt % 2][i] = 0;
link_buf[cnt % 2][i + 1] = 0;
}
}
}
}
#endif // !DISABLED_FOR_TARGETS(ESP8266, ESP32)

Wyświetl plik

@ -3,6 +3,6 @@
#
COMPONENT_SRCDIRS += param_test touch_sensor_test adc_test
COMPONENT_PRIV_INCLUDEDIRS += param_test/include
COMPONENT_PRIV_INCLUDEDIRS += param_test/include touch_sensor_test/include
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive

Wyświetl plik

@ -28,7 +28,11 @@ static const char *TAG = "test_adc";
#define ADC1_TEST_ATTEN ADC_ATTEN_DB_11
#define ADC2_TEST_ATTEN ADC_ATTEN_DB_11
#if CONFIG_IDF_TARGET_ESP32
#define ADC1_TEST_CHANNEL_NUM 8
#elif CONFIG_IDF_TARGET_ESP32S2
#define ADC1_TEST_CHANNEL_NUM 10
#endif
#define ADC2_TEST_CHANNEL_NUM 6
static const int adc1_ch[ADC1_TEST_CHANNEL_NUM] = {
@ -40,6 +44,10 @@ static const int adc1_ch[ADC1_TEST_CHANNEL_NUM] = {
ADC1_CHANNEL_5,
ADC1_CHANNEL_6,
ADC1_CHANNEL_7,
#if CONFIG_IDF_TARGET_ESP32S2
ADC1_CHANNEL_8,
ADC1_CHANNEL_9,
#endif
};
static const int adc2_ch[ADC2_TEST_CHANNEL_NUM] = {
@ -65,6 +73,7 @@ static void adc_fake_tie_middle(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
TEST_ESP_OK(rtc_gpio_pulldown_en(gpio_num));
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_PULLUP_PULLDOWN));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
}
static void adc_fake_tie_high(adc_unit_t adc_unit, adc_channel_t channel)
@ -79,6 +88,8 @@ static void adc_fake_tie_high(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_pullup_en(gpio_num));
TEST_ESP_OK(rtc_gpio_pulldown_dis(gpio_num));
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_PULLUP_ONLY));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(gpio_num, 1));
}
static void adc_fake_tie_low(adc_unit_t adc_unit, adc_channel_t channel)
@ -93,6 +104,8 @@ static void adc_fake_tie_low(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));
TEST_ESP_OK(rtc_gpio_pulldown_en(gpio_num));
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_PULLDOWN_ONLY));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_OUTPUT_ONLY));
TEST_ESP_OK(rtc_gpio_set_level(gpio_num, 0));
}
static void adc_io_normal(adc_unit_t adc_unit, adc_channel_t channel)
@ -107,6 +120,7 @@ static void adc_io_normal(adc_unit_t adc_unit, adc_channel_t channel)
TEST_ESP_OK(rtc_gpio_pullup_dis(gpio_num));
TEST_ESP_OK(rtc_gpio_pulldown_dis(gpio_num));
TEST_ESP_OK(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
TEST_ESP_OK(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
}
TEST_CASE("ADC1 rtc read", "[adc1]")
@ -177,6 +191,7 @@ TEST_CASE("ADC1 rtc read", "[adc1]")
adc1_val[i] = adc1_get_raw((adc1_channel_t)adc1_ch[i]);
printf("CH%d-%d ", adc1_ch[i], adc1_val[i]);
#ifdef CONFIG_IDF_TARGET_ESP32S2
TEST_ASSERT_NOT_EQUAL( adc1_val[i], 0x1fff );
TEST_ASSERT_NOT_EQUAL( adc1_val[i], 0 );
#endif
}
@ -264,3 +279,77 @@ TEST_CASE("ADC2 rtc read", "[adc2]")
adc_io_normal(ADC_UNIT_1, adc1_ch[i]);
}
}
#include "touch_scope.h"
/**
* 0: ADC1 channels raw data debug.
* 1: ADC2 channels raw data debug.
*/
#define SCOPE_DEBUG_TYPE 1
#define SCOPE_DEBUG_CHANNEL_MAX (10)
#define SCOPE_DEBUG_ENABLE (0)
#define SCOPE_UART_BUADRATE (256000)
#define SCOPE_DEBUG_FREQ_MS (50)
/**
* Manual test: Capture ADC-DMA data and display it on the serial oscilloscope. Used to observe the stability of the data.
* Use step:
* 1. Call this function in `esp-idf/tools/unit-test-app/main/app_main.c`.
* 2. Use `ESP-Tuning Tool`(download from `www.espressif.com`) to capture.
* 3. The readings of multiple channels will be displayed on the tool.
*/
void test_adc_slope_debug(void)
{
float scope_temp[SCOPE_DEBUG_CHANNEL_MAX] = {0}; // max scope channel is 10.
test_tp_scope_debug_init(0, -1, -1, SCOPE_UART_BUADRATE);
#if SCOPE_DEBUG_TYPE == 0
/* adc1 Configure */
adc1_config_width(ADC1_TEST_WIDTH);
ESP_LOGI(TAG, "ADC1 [CH - GPIO] atten %d:", ADC1_TEST_ATTEN);
for (int i = 0; i < ADC1_TEST_CHANNEL_NUM; i++) {
TEST_ESP_OK( adc1_config_channel_atten(adc1_ch[i], ADC1_TEST_ATTEN) );
ESP_LOGI(TAG, "[CH%d - IO%d]", adc1_ch[i], ADC_GET_IO_NUM(0, adc1_ch[i]));
}
/* tie midedle */
for (int i = 0; i < ADC1_TEST_CHANNEL_NUM; i++) {
adc_fake_tie_middle(ADC_UNIT_1, adc1_ch[i]);
}
vTaskDelay(10 / portTICK_RATE_MS);
while (1) {
/* adc Read */
for (int i = 0; i < ADC1_TEST_CHANNEL_NUM; i++) {
scope_temp[i] = adc1_get_raw((adc1_channel_t)adc1_ch[i]);
}
test_tp_print_to_scope(scope_temp, ADC1_TEST_CHANNEL_NUM);
vTaskDelay(SCOPE_DEBUG_FREQ_MS / portTICK_RATE_MS);
}
#elif SCOPE_DEBUG_TYPE == 1
int adc2_val[ADC2_TEST_CHANNEL_NUM] = {0};
/* adc2 Configure */
ESP_LOGI(TAG, "ADC2 [CH - GPIO] atten %d:", ADC2_TEST_ATTEN);
for (int i = 0; i < ADC2_TEST_CHANNEL_NUM; i++) {
TEST_ESP_OK( adc2_config_channel_atten(adc2_ch[i], ADC2_TEST_ATTEN) );
ESP_LOGI(TAG, "[CH%d - IO%d]:", adc2_ch[i], ADC_GET_IO_NUM(1, adc2_ch[i]));
}
/* tie midedle */
for (int i = 0; i < ADC2_TEST_CHANNEL_NUM; i++) {
adc_fake_tie_middle(ADC_UNIT_2, adc2_ch[i]);
}
vTaskDelay(10 / portTICK_RATE_MS);
while (1) {
/* adc Read */
printf("ADC2: ");
for (int i = 0; i < ADC2_TEST_CHANNEL_NUM; i++) {
adc2_get_raw((adc2_channel_t)adc2_ch[i], ADC2_TEST_WIDTH, &adc2_val[i]);
scope_temp[i] = adc2_val[i];
}
test_tp_print_to_scope(scope_temp, ADC2_TEST_CHANNEL_NUM);
vTaskDelay(SCOPE_DEBUG_FREQ_MS / portTICK_RATE_MS);
}
#endif
}

Wyświetl plik

@ -28,4 +28,4 @@
#define SOC_ADC_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) ((PERIPH_NUM==0)? 2 : 1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT (2)

Wyświetl plik

@ -240,8 +240,8 @@ void adc_hal_arbiter_config(adc_arbiter_t *config);
* @param channel adc channel number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
* @param force_cal true: Do not use the results that have already been verified, and perform the verification again. It will take a long time.
* false: Use the result of the last calibration.
* @param force_cal true: Do not use the results that have already been verified, and perform the verification again. It will take a long time(~40us).
* false: Use the result of the last calibration. Return immediately.
*
* @return
* - The calibration result (initial data) to ADC, use `adc_hal_set_calibration_param` to set.