kopia lustrzana https://github.com/espressif/esp-idf
Merge branch 'feature/esp32_core_dump' into 'master'
esp32 core dump to flash 1. menuconfig option to select where to store core dump: flash, uart or disable 2. Saving of core dump to flash 3. Partition table definitions files with core dump partition 4. Python scripts to support core dump generation from GDB command line See merge request !341pull/240/head
commit
ca9f62ad77
|
@ -54,6 +54,47 @@ config TRACEMEM_RESERVE_DRAM
|
|||
default 0x4000 if MEMMAP_TRACEMEM && !MEMMAP_TRACEMEM_TWOBANKS
|
||||
default 0x0
|
||||
|
||||
choice ESP32_COREDUMP_TO_FLASH_OR_UART
|
||||
prompt "Core dump destination"
|
||||
default ESP32_ENABLE_COREDUMP_TO_NONE
|
||||
help
|
||||
Select place to store core dump: flash, uart or none (to disable core dumps generation).
|
||||
|
||||
If core dump is configured to be stored in flash and custom partition table is used add
|
||||
corresponding entry to your CSV. For examples, please see predefined partition table CSV descriptions
|
||||
in the components/partition_table directory.
|
||||
|
||||
config ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
bool "Flash"
|
||||
select ESP32_ENABLE_COREDUMP
|
||||
config ESP32_ENABLE_COREDUMP_TO_UART
|
||||
bool "UART"
|
||||
select ESP32_ENABLE_COREDUMP
|
||||
config ESP32_ENABLE_COREDUMP_TO_NONE
|
||||
bool "None"
|
||||
endchoice
|
||||
|
||||
config ESP32_ENABLE_COREDUMP
|
||||
bool
|
||||
default F
|
||||
help
|
||||
Enables/disable core dump module.
|
||||
|
||||
config ESP32_CORE_DUMP_UART_DELAY
|
||||
int "Core dump print to UART delay"
|
||||
depends on ESP32_ENABLE_COREDUMP_TO_UART
|
||||
default 0
|
||||
help
|
||||
Config delay (in ms) before printing core dump to UART.
|
||||
Delay can be interrupted by pressing Enter key.
|
||||
|
||||
config ESP32_CORE_DUMP_LOG_LEVEL
|
||||
int "Core dump module logging level"
|
||||
depends on ESP32_ENABLE_COREDUMP
|
||||
default 1
|
||||
help
|
||||
Config core dump module logging level (0-5).
|
||||
|
||||
# Not implemented and/or needs new silicon rev to work
|
||||
config MEMMAP_SPISRAM
|
||||
bool "Use external SPI SRAM chip as main memory"
|
||||
|
|
|
@ -0,0 +1,474 @@
|
|||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <string.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "soc/uart_reg.h"
|
||||
#include "soc/io_mux_reg.h"
|
||||
#include "soc/timer_group_struct.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "driver/gpio.h"
|
||||
|
||||
#include "esp_panic.h"
|
||||
#include "esp_partition.h"
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP
|
||||
#define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
|
||||
#include "esp_log.h"
|
||||
const static char *TAG = "esp_core_dump";
|
||||
|
||||
#define ESP_COREDUMP_LOGE( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) { ets_printf(LOG_FORMAT(E, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
#define ESP_COREDUMP_LOGW( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) { ets_printf(LOG_FORMAT(W, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
#define ESP_COREDUMP_LOGI( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) { ets_printf(LOG_FORMAT(I, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
#define ESP_COREDUMP_LOGD( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
#define ESP_COREDUMP_LOGV( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_VERBOSE) { ets_printf(LOG_FORMAT(V, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
|
||||
#else
|
||||
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
|
||||
#endif
|
||||
|
||||
|
||||
// TODO: allow user to set this in menuconfig or get tasks iteratively
|
||||
#define COREDUMP_MAX_TASKS_NUM 32
|
||||
|
||||
typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
|
||||
typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
|
||||
typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
|
||||
typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
|
||||
|
||||
typedef struct _core_dump_write_config_t
|
||||
{
|
||||
esp_core_dump_write_prepare_t prepare;
|
||||
esp_core_dump_write_start_t start;
|
||||
esp_core_dump_write_end_t end;
|
||||
esp_core_dump_flash_write_data_t write;
|
||||
void * priv;
|
||||
|
||||
} core_dump_write_config_t;
|
||||
|
||||
static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
|
||||
{
|
||||
union
|
||||
{
|
||||
uint8_t data8[12];
|
||||
uint32_t data32[3];
|
||||
} rom_data;
|
||||
esp_err_t err;
|
||||
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
|
||||
UBaseType_t tcb_sz, task_num;
|
||||
uint32_t data_len = 0, i, len;
|
||||
|
||||
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
|
||||
// take TCB padding into account, actual TCB size will be stored in header
|
||||
if (tcb_sz % sizeof(uint32_t))
|
||||
len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
|
||||
else
|
||||
len = tcb_sz;
|
||||
// header + tasknum*(tcb + stack start/end + tcb addr)
|
||||
data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
|
||||
for (i = 0; i < task_num; i++) {
|
||||
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
|
||||
// set correct stack top for current task
|
||||
tasks[i].pxTopOfStack = (StackType_t *)frame;
|
||||
ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
|
||||
}
|
||||
else {
|
||||
XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
|
||||
if (task_frame->exit == 0) {
|
||||
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
|
||||
}
|
||||
else {
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
|
||||
#endif
|
||||
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
|
||||
}
|
||||
}
|
||||
#if( portSTACK_GROWTH < 0 )
|
||||
len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
|
||||
#else
|
||||
len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
|
||||
#endif
|
||||
ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
|
||||
// take stack padding into account
|
||||
if (len % sizeof(uint32_t))
|
||||
len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
|
||||
data_len += len;
|
||||
}
|
||||
|
||||
// prepare write
|
||||
if (write_cfg->prepare) {
|
||||
err = write_cfg->prepare(write_cfg->priv, &data_len);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu", data_len);
|
||||
|
||||
// write start
|
||||
if (write_cfg->start) {
|
||||
err = write_cfg->start(write_cfg->priv);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// write header
|
||||
rom_data.data32[0] = data_len;
|
||||
rom_data.data32[1] = task_num;
|
||||
rom_data.data32[2] = tcb_sz;
|
||||
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
|
||||
return;
|
||||
}
|
||||
|
||||
// write tasks
|
||||
for (i = 0; i < task_num; i++) {
|
||||
ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
|
||||
// save TCB address, stack base and stack top addr
|
||||
rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
|
||||
rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
|
||||
rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
|
||||
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
|
||||
return;
|
||||
}
|
||||
// save TCB
|
||||
err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
|
||||
return;
|
||||
}
|
||||
// save task stack
|
||||
err = write_cfg->write(write_cfg->priv,
|
||||
#if( portSTACK_GROWTH < 0 )
|
||||
tasks[i].pxTopOfStack,
|
||||
(uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack
|
||||
#else
|
||||
tasks[i].pxEndOfStack,
|
||||
(uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
|
||||
#endif
|
||||
);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// write end
|
||||
if (write_cfg->end) {
|
||||
err = write_cfg->end(write_cfg->priv);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
|
||||
// magic numbers to control core dump data consistency
|
||||
#define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
|
||||
#define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
|
||||
|
||||
typedef struct _core_dump_write_flash_data_t
|
||||
{
|
||||
uint32_t off;
|
||||
} core_dump_write_flash_data_t;
|
||||
|
||||
// core dump partition start
|
||||
static uint32_t s_core_part_start;
|
||||
// core dump partition size
|
||||
static uint32_t s_core_part_size;
|
||||
|
||||
static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
|
||||
{
|
||||
esp_err_t err;
|
||||
uint32_t data_len = 0, k, len;
|
||||
union
|
||||
{
|
||||
uint8_t data8[4];
|
||||
uint32_t data32;
|
||||
} rom_data;
|
||||
|
||||
data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
|
||||
err = spi_flash_write(off, data, data_len);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
|
||||
return 0;
|
||||
}
|
||||
|
||||
len = data_size % sizeof(uint32_t);
|
||||
if (len) {
|
||||
// write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
|
||||
rom_data.data32 = 0;
|
||||
for (k = 0; k < len; k++)
|
||||
rom_data.data8[k] = *(data + data_len + k);
|
||||
err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
|
||||
return 0;
|
||||
}
|
||||
data_len += sizeof(uint32_t);
|
||||
}
|
||||
|
||||
return data_len;
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
|
||||
{
|
||||
esp_err_t err;
|
||||
uint32_t sec_num;
|
||||
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
|
||||
|
||||
// add space for 2 magics. TODO: change to CRC
|
||||
if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) {
|
||||
ESP_COREDUMP_LOGE("Not enough space to save core dump!");
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
*data_len += 2*sizeof(uint32_t);
|
||||
|
||||
wr_data->off = 0;
|
||||
|
||||
sec_num = *data_len / SPI_FLASH_SEC_SIZE;
|
||||
if (*data_len % SPI_FLASH_SEC_SIZE)
|
||||
sec_num++;
|
||||
err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
uint32_t data32 = word;
|
||||
|
||||
err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
|
||||
return err;
|
||||
}
|
||||
wr_data->off += sizeof(uint32_t);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_flash_write_start(void *priv)
|
||||
{
|
||||
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
|
||||
// save magic 1
|
||||
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_flash_write_end(void *priv)
|
||||
{
|
||||
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
|
||||
#if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
|
||||
uint32_t i;
|
||||
union
|
||||
{
|
||||
uint8_t data8[16];
|
||||
uint32_t data32[4];
|
||||
} rom_data;
|
||||
|
||||
esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
|
||||
if (err != ESP_OK) {
|
||||
ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
|
||||
return err;
|
||||
}
|
||||
else {
|
||||
ESP_COREDUMP_LOG_PROCESS("Data from flash:");
|
||||
for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
|
||||
ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// save magic 2
|
||||
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
|
||||
|
||||
uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len);
|
||||
if (len != data_len)
|
||||
return ESP_FAIL;
|
||||
|
||||
wr_data->off += len;
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
void esp_core_dump_to_flash(XtExcFrame *frame)
|
||||
{
|
||||
core_dump_write_config_t wr_cfg;
|
||||
core_dump_write_flash_data_t wr_data;
|
||||
|
||||
/* init non-OS flash access critical section */
|
||||
spi_flash_guard_set(&g_flash_guard_no_os_ops);
|
||||
|
||||
wr_cfg.prepare = esp_core_dump_flash_write_prepare;
|
||||
wr_cfg.start = esp_core_dump_flash_write_start;
|
||||
wr_cfg.end = esp_core_dump_flash_write_end;
|
||||
wr_cfg.write = esp_core_dump_flash_write_data;
|
||||
wr_cfg.priv = &wr_data;
|
||||
|
||||
ESP_COREDUMP_LOGI("Save core dump to flash...");
|
||||
esp_core_dump_write(frame, &wr_cfg);
|
||||
ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
|
||||
}
|
||||
#endif
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
|
||||
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
|
||||
static const char *b64 =
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
int i, j, a, b, c;
|
||||
|
||||
for (i = j = 0; i < src_len; i += 3) {
|
||||
a = src[i];
|
||||
b = i + 1 >= src_len ? 0 : src[i + 1];
|
||||
c = i + 2 >= src_len ? 0 : src[i + 2];
|
||||
|
||||
dst[j++] = b64[a >> 2];
|
||||
dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
|
||||
if (i + 1 < src_len) {
|
||||
dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
|
||||
}
|
||||
if (i + 2 < src_len) {
|
||||
dst[j++] = b64[c & 0x3F];
|
||||
}
|
||||
}
|
||||
while (j % 4 != 0) {
|
||||
dst[j++] = '=';
|
||||
}
|
||||
dst[j++] = '\0';
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_uart_write_start(void *priv)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
ets_printf("================= CORE DUMP START =================\r\n");
|
||||
return err;
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_uart_write_end(void *priv)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
ets_printf("================= CORE DUMP END =================\r\n");
|
||||
return err;
|
||||
}
|
||||
|
||||
static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
|
||||
{
|
||||
esp_err_t err = ESP_OK;
|
||||
char buf[64 + 4], *addr = data;
|
||||
char *end = addr + data_len;
|
||||
|
||||
while (addr < end) {
|
||||
size_t len = end - addr;
|
||||
if (len > 48) len = 48;
|
||||
/* Copy to stack to avoid alignment restrictions. */
|
||||
char *tmp = buf + (sizeof(buf) - len);
|
||||
memcpy(tmp, addr, len);
|
||||
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
|
||||
addr += len;
|
||||
ets_printf("%s\r\n", buf);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int esp_core_dump_uart_get_char() {
|
||||
int i;
|
||||
uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
|
||||
if (reg)
|
||||
i = READ_PERI_REG(UART_FIFO_REG(0));
|
||||
else
|
||||
i = -1;
|
||||
return i;
|
||||
}
|
||||
|
||||
void esp_core_dump_to_uart(XtExcFrame *frame)
|
||||
{
|
||||
core_dump_write_config_t wr_cfg;
|
||||
uint32_t tm_end, tm_cur;
|
||||
int ch;
|
||||
|
||||
wr_cfg.prepare = NULL;
|
||||
wr_cfg.start = esp_core_dump_uart_write_start;
|
||||
wr_cfg.end = esp_core_dump_uart_write_end;
|
||||
wr_cfg.write = esp_core_dump_uart_write_data;
|
||||
wr_cfg.priv = NULL;
|
||||
|
||||
//Make sure txd/rxd are enabled
|
||||
gpio_pullup_dis(1);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
|
||||
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
|
||||
|
||||
ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
|
||||
tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
|
||||
ch = esp_core_dump_uart_get_char();
|
||||
while (!(ch == '\n' || ch == '\r')) {
|
||||
tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
|
||||
if (tm_cur >= tm_end)
|
||||
break;
|
||||
/* Feed the Cerberus. */
|
||||
TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
|
||||
TIMERG0.wdt_feed = 1;
|
||||
TIMERG0.wdt_wprotect = 0;
|
||||
ch = esp_core_dump_uart_get_char();
|
||||
}
|
||||
ESP_COREDUMP_LOGI("Print core dump to uart...");
|
||||
esp_core_dump_write(frame, &wr_cfg);
|
||||
ESP_COREDUMP_LOGI("Core dump has been written to uart.");
|
||||
}
|
||||
#endif
|
||||
|
||||
void esp_core_dump_init()
|
||||
{
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
const esp_partition_t *core_part;
|
||||
|
||||
ESP_LOGI(TAG, "Init core dump to flash");
|
||||
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
|
||||
if (!core_part) {
|
||||
ESP_LOGE(TAG, "No core dump partition found!");
|
||||
return;
|
||||
}
|
||||
ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
|
||||
s_core_part_start = core_part->address;
|
||||
s_core_part_size = core_part->size;
|
||||
#endif
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
|
||||
ESP_LOGI(TAG, "Init core dump to UART");
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -55,6 +55,7 @@
|
|||
#include "esp_task_wdt.h"
|
||||
#include "esp_phy_init.h"
|
||||
#include "esp_coexist.h"
|
||||
#include "esp_core_dump.h"
|
||||
#include "trax.h"
|
||||
|
||||
#define STRINGIFY(s) STRINGIFY2(s)
|
||||
|
@ -202,6 +203,8 @@ void start_cpu0_default(void)
|
|||
#endif
|
||||
esp_ipc_init();
|
||||
spi_flash_init();
|
||||
/* init default OS-aware flash access critical section */
|
||||
spi_flash_guard_set(&g_flash_guard_default_ops);
|
||||
|
||||
#if CONFIG_ESP32_PHY_AUTO_INIT
|
||||
nvs_flash_init();
|
||||
|
@ -214,6 +217,10 @@ void start_cpu0_default(void)
|
|||
}
|
||||
#endif
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP
|
||||
esp_core_dump_init();
|
||||
#endif
|
||||
|
||||
xTaskCreatePinnedToCore(&main_task, "main",
|
||||
ESP_TASK_MAIN_STACK, NULL,
|
||||
ESP_TASK_MAIN_PRIO, NULL, 0);
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef ESP_CORE_DUMP_H_
|
||||
#define ESP_CORE_DUMP_H_
|
||||
|
||||
/**
|
||||
* @brief Initializes core dump module internal data.
|
||||
*
|
||||
* @note Should be called at system startup.
|
||||
*/
|
||||
void esp_core_dump_init();
|
||||
|
||||
/**
|
||||
* @brief Saves core dump to flash.
|
||||
*
|
||||
* The structure of data stored in flash is as follows:
|
||||
* | MAGIC1 |
|
||||
* | TOTAL_LEN | TASKS_NUM | TCB_SIZE |
|
||||
* | TCB_ADDR_1 | STACK_TOP_1 | STACK_END_1 | TCB_1 | STACK_1 |
|
||||
* . . . .
|
||||
* . . . .
|
||||
* | TCB_ADDR_N | STACK_TOP_N | STACK_END_N | TCB_N | STACK_N |
|
||||
* | MAGIC2 |
|
||||
* Core dump in flash consists of header and data for every task in the system at the moment of crash.
|
||||
* For flash data integrity control two magic numbers are used at the beginning and the end of core dump.
|
||||
* The structure of core dump data is described below in details.
|
||||
* 1) MAGIC1 and MAGIC2 are special numbers stored at the beginning and the end of core dump.
|
||||
* They are used to control core dump data integrity. Size of every number is 4 bytes.
|
||||
* 2) Core dump starts with header:
|
||||
* 2.1) TOTAL_LEN is total length of core dump data in flash including magic numbers. Size is 4 bytes.
|
||||
* 2.2) TASKS_NUM is the number of tasks for which data are stored. Size is 4 bytes.
|
||||
* 2.3) TCB_SIZE is the size of task's TCB structure. Size is 4 bytes.
|
||||
* 3) Core dump header is followed by the data for every task in the system.
|
||||
* Task data are started with task header:
|
||||
* 3.1) TCB_ADDR is the address of TCB in memory. Size is 4 bytes.
|
||||
* 3.2) STACK_TOP is the top of task's stack (address of the topmost stack item). Size is 4 bytes.
|
||||
* 3.2) STACK_END is the end of task's stack (address from which task's stack starts). Size is 4 bytes.
|
||||
* 4) Task header is followed by TCB data. Size is TCB_SIZE bytes.
|
||||
* 5) Task's stack is placed after TCB data. Size is (STACK_END - STACK_TOP) bytes.
|
||||
*/
|
||||
void esp_core_dump_to_flash();
|
||||
|
||||
/**
|
||||
* @brief Print base64-encoded core dump to UART.
|
||||
*
|
||||
* The structure of core dump data is the same as for data stored in flash (@see esp_core_dump_to_flash) with some notes:
|
||||
* 1) Magic numbers are not present in core dump printed to UART.
|
||||
* 2) Since magic numbers are omitted TOTAL_LEN does not include their size.
|
||||
* 3) Printed base64 data are surrounded with special messages to help user recognize the start and end of actual data.
|
||||
*/
|
||||
void esp_core_dump_to_uart();
|
||||
|
||||
#endif
|
|
@ -33,6 +33,7 @@
|
|||
#include "esp_panic.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_core_dump.h"
|
||||
|
||||
/*
|
||||
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
|
||||
|
@ -46,13 +47,13 @@
|
|||
|
||||
#if !CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
//printf may be broken, so we fix our own printing fns...
|
||||
inline static void panicPutChar(char c)
|
||||
static void panicPutChar(char c)
|
||||
{
|
||||
while (((READ_PERI_REG(UART_STATUS_REG(0)) >> UART_TXFIFO_CNT_S)&UART_TXFIFO_CNT) >= 126) ;
|
||||
WRITE_PERI_REG(UART_FIFO_REG(0), c);
|
||||
}
|
||||
|
||||
inline static void panicPutStr(const char *c)
|
||||
static void panicPutStr(const char *c)
|
||||
{
|
||||
int x = 0;
|
||||
while (c[x] != 0) {
|
||||
|
@ -61,7 +62,7 @@ inline static void panicPutStr(const char *c)
|
|||
}
|
||||
}
|
||||
|
||||
inline static void panicPutHex(int a)
|
||||
static void panicPutHex(int a)
|
||||
{
|
||||
int x;
|
||||
int c;
|
||||
|
@ -76,7 +77,7 @@ inline static void panicPutHex(int a)
|
|||
}
|
||||
}
|
||||
|
||||
inline static void panicPutDec(int a)
|
||||
static void panicPutDec(int a)
|
||||
{
|
||||
int n1, n2;
|
||||
n1 = a % 10;
|
||||
|
@ -90,10 +91,10 @@ inline static void panicPutDec(int a)
|
|||
}
|
||||
#else
|
||||
//No printing wanted. Stub out these functions.
|
||||
inline static void panicPutChar(char c) { }
|
||||
inline static void panicPutStr(const char *c) { }
|
||||
inline static void panicPutHex(int a) { }
|
||||
inline static void panicPutDec(int a) { }
|
||||
static void panicPutChar(char c) { }
|
||||
static void panicPutStr(const char *c) { }
|
||||
static void panicPutHex(int a) { }
|
||||
static void panicPutDec(int a) { }
|
||||
#endif
|
||||
|
||||
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, signed char *pcTaskName )
|
||||
|
@ -301,7 +302,7 @@ static void putEntry(uint32_t pc, uint32_t sp)
|
|||
static void doBacktrace(XtExcFrame *frame)
|
||||
{
|
||||
uint32_t i = 0, pc = frame->pc, sp = frame->a1;
|
||||
panicPutStr("\nBacktrace:");
|
||||
panicPutStr("\r\nBacktrace:");
|
||||
/* Do not check sanity on first entry, PC could be smashed. */
|
||||
putEntry(pc, sp);
|
||||
pc = frame->a0;
|
||||
|
@ -317,7 +318,7 @@ static void doBacktrace(XtExcFrame *frame)
|
|||
break;
|
||||
}
|
||||
}
|
||||
panicPutStr("\n\n");
|
||||
panicPutStr("\r\n\r\n");
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -351,8 +352,8 @@ static void commonErrorHandler(XtExcFrame *frame)
|
|||
panicPutHex(regs[x + y + 1]);
|
||||
panicPutStr(" ");
|
||||
}
|
||||
panicPutStr("\r\n");
|
||||
}
|
||||
panicPutStr("\r\n");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -363,7 +364,14 @@ static void commonErrorHandler(XtExcFrame *frame)
|
|||
disableAllWdts();
|
||||
panicPutStr("Entering gdb stub now.\r\n");
|
||||
esp_gdbstub_panic_handler(frame);
|
||||
#elif CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
#else
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
esp_core_dump_to_flash(frame);
|
||||
#endif
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART && !CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
esp_core_dump_to_uart(frame);
|
||||
#endif
|
||||
#if CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
|
||||
panicPutStr("Rebooting...\r\n");
|
||||
for (x = 0; x < 100; x++) {
|
||||
ets_delay_us(1000);
|
||||
|
@ -374,6 +382,7 @@ static void commonErrorHandler(XtExcFrame *frame)
|
|||
panicPutStr("CPU halted.\r\n");
|
||||
while (1);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
|
Plik diff jest za duży
Load Diff
|
@ -0,0 +1,105 @@
|
|||
/* Application For Core Dumps Generation
|
||||
|
||||
This example code is in the Public Domain (or CC0 licensed, at your option.)
|
||||
|
||||
Unless required by applicable law or agreed to in writing, this
|
||||
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_system.h"
|
||||
#include "nvs_flash.h"
|
||||
|
||||
|
||||
// task crash indicators
|
||||
#define TCI_NULL_PTR 0x1
|
||||
#define TCI_UNALIGN_PTR 0x2
|
||||
#define TCI_FAIL_ASSERT 0x4
|
||||
|
||||
volatile unsigned long crash_flags = TCI_UNALIGN_PTR;
|
||||
|
||||
void bad_ptr_func()
|
||||
{
|
||||
unsigned long *ptr = (unsigned long *)0;
|
||||
volatile int cnt;
|
||||
int i = 0;
|
||||
|
||||
for (i = 0; i < 1000; i++) {
|
||||
cnt++;
|
||||
}
|
||||
|
||||
if(crash_flags & TCI_NULL_PTR) {
|
||||
printf("Write to bad address 0x%lx.\n", (unsigned long)ptr);
|
||||
*ptr = 0xDEADBEEF;
|
||||
}
|
||||
}
|
||||
|
||||
void bad_ptr_task(void *pvParameter)
|
||||
{
|
||||
printf("Task 'bad_ptr_task' start.\n");
|
||||
while (1) {
|
||||
vTaskDelay(1000 / portTICK_RATE_MS);
|
||||
printf("Task 'bad_ptr_task' run.\n");
|
||||
bad_ptr_func();
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void recur_func()
|
||||
{
|
||||
static int rec_cnt;
|
||||
unsigned short *ptr = (unsigned short *)0x5;
|
||||
volatile int cnt;
|
||||
int i = 0;
|
||||
|
||||
if (rec_cnt++ > 2) {
|
||||
return;
|
||||
}
|
||||
for (i = 0; i < 4; i++) {
|
||||
cnt++;
|
||||
if(i == 2) {
|
||||
recur_func();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(crash_flags & TCI_UNALIGN_PTR) {
|
||||
printf("Write to unaligned address 0x%lx.\n", (unsigned long)ptr);
|
||||
*ptr = 0xDEAD;
|
||||
}
|
||||
}
|
||||
|
||||
void unaligned_ptr_task(void *pvParameter)
|
||||
{
|
||||
printf("Task 'unaligned_ptr_task' start.\n");
|
||||
while (1) {
|
||||
vTaskDelay(1000 / portTICK_RATE_MS);
|
||||
printf("Task 'unaligned_ptr_task' run.\n");
|
||||
recur_func();
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void failed_assert_task(void *pvParameter)
|
||||
{
|
||||
printf("Task 'failed_assert_task' start.\n");
|
||||
while (1) {
|
||||
vTaskDelay(1000 / portTICK_RATE_MS);
|
||||
printf("Task 'failed_assert_task' run.\n");
|
||||
if(crash_flags & TCI_FAIL_ASSERT) {
|
||||
printf("Assert.\n");
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void app_main()
|
||||
{
|
||||
nvs_flash_init();
|
||||
xTaskCreate(&bad_ptr_task, "bad_ptr_task", 2048, NULL, 5, NULL);
|
||||
xTaskCreatePinnedToCore(&unaligned_ptr_task, "unaligned_ptr_task", 2048, NULL, 7, NULL, 1);
|
||||
xTaskCreatePinnedToCore(&failed_assert_task, "failed_assert_task", 2048, NULL, 10, NULL, 0);
|
||||
}
|
|
@ -863,8 +863,8 @@ typedef struct xSTATIC_TCB
|
|||
void *pxDummy6;
|
||||
uint8_t ucDummy7[ configMAX_TASK_NAME_LEN ];
|
||||
UBaseType_t uxDummyCoreId;
|
||||
#if ( portSTACK_GROWTH > 0 )
|
||||
void *pxDummy8;
|
||||
#if ( portSTACK_GROWTH > 0 || configENABLE_TASK_SNAPSHOT == 1 )
|
||||
void *pxDummy8;
|
||||
#endif
|
||||
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
||||
UBaseType_t uxDummy9;
|
||||
|
|
|
@ -268,7 +268,9 @@
|
|||
#define configXT_BOARD 1 /* Board mode */
|
||||
#define configXT_SIMULATOR 0
|
||||
|
||||
|
||||
#if CONFIG_ESP32_ENABLE_COREDUMP
|
||||
#define configENABLE_TASK_SNAPSHOT 1
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* FREERTOS_CONFIG_H */
|
||||
|
|
|
@ -181,6 +181,18 @@ typedef struct xTASK_STATUS
|
|||
uint16_t usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
|
||||
} TaskStatus_t;
|
||||
|
||||
/*
|
||||
* Used with the uxTaskGetSnapshotAll() function to save memory snapshot of each task in the system.
|
||||
* We need this struct because TCB_t is defined (hidden) in tasks.c.
|
||||
*/
|
||||
typedef struct xTASK_SNAPSHOT
|
||||
{
|
||||
void *pxTCB; /* Address of task control block. */
|
||||
StackType_t *pxTopOfStack; /* Points to the location of the last item placed on the tasks stack. */
|
||||
StackType_t *pxEndOfStack; /* Points to the end of the stack. pxTopOfStack < pxEndOfStack, stack grows hi2lo
|
||||
pxTopOfStack > pxEndOfStack, stack grows lo2hi*/
|
||||
} TaskSnapshot_t;
|
||||
|
||||
/* Possible return values for eTaskConfirmSleepModeStatus(). */
|
||||
typedef enum
|
||||
{
|
||||
|
@ -2173,6 +2185,17 @@ eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;
|
|||
*/
|
||||
void *pvTaskIncrementMutexHeldCount( void );
|
||||
|
||||
/*
|
||||
* This function fills array with TaskSnapshot_t structures for every task in the system.
|
||||
* Used by core dump facility to get snapshots of all tasks in the system.
|
||||
* Only available when configENABLE_TASK_SNAPSHOT is set to 1.
|
||||
* @param pxTaskSnapshotArray Pointer to array of TaskSnapshot_t structures to store tasks snapshot data.
|
||||
* @param uxArraySize Size of tasks snapshots array.
|
||||
* @param pxTcbSz Pointer to store size of TCB.
|
||||
* @return Number of elements stored in array.
|
||||
*/
|
||||
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz );
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -181,7 +181,7 @@ typedef struct tskTaskControlBlock
|
|||
char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||||
BaseType_t xCoreID; /*< Core this task is pinned to */
|
||||
/* If this moves around (other than pcTaskName size changes), please change the define in xtensa_vectors.S as well. */
|
||||
#if ( portSTACK_GROWTH > 0 )
|
||||
#if ( portSTACK_GROWTH > 0 || configENABLE_TASK_SNAPSHOT == 1 )
|
||||
StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
|
||||
#endif
|
||||
|
||||
|
@ -885,6 +885,12 @@ UBaseType_t x;
|
|||
|
||||
/* Check the alignment of the calculated top of stack is correct. */
|
||||
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
||||
#if ( configENABLE_TASK_SNAPSHOT == 1 )
|
||||
{
|
||||
/* need stack end for core dumps */
|
||||
pxNewTCB->pxEndOfStack = pxTopOfStack;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else /* portSTACK_GROWTH */
|
||||
{
|
||||
|
@ -4912,6 +4918,82 @@ TickType_t uxReturn;
|
|||
|
||||
#endif /* configUSE_TASK_NOTIFICATIONS */
|
||||
|
||||
#if ( configENABLE_TASK_SNAPSHOT == 1 )
|
||||
|
||||
static void prvTaskGetSnapshotsFromList( TaskSnapshot_t *pxTaskSnapshotArray, UBaseType_t *uxTask, const UBaseType_t uxArraySize, List_t *pxList )
|
||||
{
|
||||
TCB_t *pxNextTCB, *pxFirstTCB;
|
||||
|
||||
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
||||
{
|
||||
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
|
||||
do
|
||||
{
|
||||
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
|
||||
|
||||
if( *uxTask >= uxArraySize )
|
||||
break;
|
||||
|
||||
pxTaskSnapshotArray[ *uxTask ].pxTCB = pxNextTCB;
|
||||
pxTaskSnapshotArray[ *uxTask ].pxTopOfStack = (StackType_t *)pxNextTCB->pxTopOfStack;
|
||||
#if( portSTACK_GROWTH < 0 )
|
||||
{
|
||||
pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxNextTCB->pxEndOfStack;
|
||||
}
|
||||
#else
|
||||
{
|
||||
pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxNextTCB->pxStack;
|
||||
}
|
||||
#endif
|
||||
|
||||
(*uxTask)++;
|
||||
|
||||
} while( pxNextTCB != pxFirstTCB );
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
|
||||
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz )
|
||||
{
|
||||
UBaseType_t uxTask = 0, i = 0;
|
||||
|
||||
*pxTcbSz = sizeof(TCB_t);
|
||||
|
||||
{
|
||||
/* Fill in an TaskStatus_t structure with information on each
|
||||
task in the Ready state. */
|
||||
i = configMAX_PRIORITIES;
|
||||
do
|
||||
{
|
||||
i--;
|
||||
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( pxReadyTasksLists[ i ] ) );
|
||||
} while( i > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||||
|
||||
/* Fill in an TaskStatus_t structure with information on each
|
||||
task in the Blocked state. */
|
||||
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxDelayedTaskList );
|
||||
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxOverflowDelayedTaskList );
|
||||
|
||||
#if( INCLUDE_vTaskDelete == 1 )
|
||||
{
|
||||
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xTasksWaitingTermination );
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ( INCLUDE_vTaskSuspend == 1 )
|
||||
{
|
||||
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xSuspendedTaskList );
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return uxTask;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FREERTOS_MODULE_TEST
|
||||
#include "tasks_test_access_functions.h"
|
||||
#endif
|
||||
|
|
|
@ -75,6 +75,16 @@ void esp_log_set_vprintf(vprintf_like_t func);
|
|||
*/
|
||||
uint32_t esp_log_timestamp(void);
|
||||
|
||||
/**
|
||||
* @brief Function which returns timestamp to be used in log output
|
||||
*
|
||||
* This function uses HW cycle counter and does not depend on OS,
|
||||
* so it can be safely used after application crash.
|
||||
*
|
||||
* @return timestamp, in milliseconds
|
||||
*/
|
||||
uint32_t esp_log_early_timestamp(void);
|
||||
|
||||
/**
|
||||
* @brief Write message into the log
|
||||
*
|
||||
|
|
|
@ -45,8 +45,10 @@ config PARTITION_TABLE_CUSTOM_PHY_DATA_OFFSET
|
|||
|
||||
config PARTITION_TABLE_FILENAME
|
||||
string
|
||||
default partitions_singleapp.csv if PARTITION_TABLE_SINGLE_APP
|
||||
default partitions_two_ota.csv if PARTITION_TABLE_TWO_OTA
|
||||
default partitions_singleapp.csv if PARTITION_TABLE_SINGLE_APP && !ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
default partitions_singleapp_coredump.csv if PARTITION_TABLE_SINGLE_APP && ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
default partitions_two_ota.csv if PARTITION_TABLE_TWO_OTA && !ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
default partitions_two_ota_coredump.csv if PARTITION_TABLE_TWO_OTA && ESP32_ENABLE_COREDUMP_TO_FLASH
|
||||
default PARTITION_TABLE_CUSTOM_FILENAME if PARTITION_TABLE_CUSTOM
|
||||
|
||||
config APP_OFFSET
|
||||
|
|
|
@ -127,6 +127,7 @@ class PartitionDefinition(object):
|
|||
"ota" : 0x00,
|
||||
"phy" : 0x01,
|
||||
"nvs" : 0x02,
|
||||
"coredump" : 0x03,
|
||||
"esphttpd" : 0x80,
|
||||
"fat" : 0x81,
|
||||
"spiffs" : 0x82,
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
# Name, Type, SubType, Offset, Size
|
||||
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
|
||||
nvs, data, nvs, 0x9000, 0x6000
|
||||
phy_init, data, phy, 0xf000, 0x1000
|
||||
factory, app, factory, 0x10000, 1M
|
||||
coredump, data, coredump,, 64K
|
|
|
@ -0,0 +1,9 @@
|
|||
# Name, Type, SubType, Offset, Size
|
||||
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
|
||||
nvs, data, nvs, 0x9000, 0x4000
|
||||
otadata, data, ota, 0xd000, 0x2000
|
||||
phy_init, data, phy, 0xf000, 0x1000
|
||||
factory, 0, 0, 0x10000, 1M
|
||||
coredump, data, coredump,, 64K
|
||||
ota_0, 0, ota_0, , 1M
|
||||
ota_1, 0, ota_1, , 1M
|
|
|
@ -141,6 +141,29 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
|
|||
esp_intr_noniram_enable();
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
|
||||
{
|
||||
const uint32_t cpuid = xPortGetCoreID();
|
||||
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
|
||||
|
||||
// do not care about other CPU, it was halted upon entering panic handler
|
||||
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
|
||||
// Kill interrupts that aren't located in IRAM
|
||||
esp_intr_noniram_disable();
|
||||
// Disable cache on this CPU as well
|
||||
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
|
||||
{
|
||||
const uint32_t cpuid = xPortGetCoreID();
|
||||
|
||||
// Re-enable cache on this CPU
|
||||
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
|
||||
// Re-enable non-iram interrupts
|
||||
esp_intr_noniram_enable();
|
||||
}
|
||||
|
||||
#else // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
void spi_flash_init_lock()
|
||||
|
@ -172,6 +195,22 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
|
|||
esp_intr_noniram_enable();
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
|
||||
{
|
||||
// Kill interrupts that aren't located in IRAM
|
||||
esp_intr_noniram_disable();
|
||||
// Disable cache on this CPU as well
|
||||
spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
|
||||
{
|
||||
// Re-enable cache on this CPU
|
||||
spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
|
||||
// Re-enable non-iram interrupts
|
||||
esp_intr_noniram_enable();
|
||||
}
|
||||
|
||||
#endif // CONFIG_FREERTOS_UNICORE
|
||||
|
||||
/**
|
||||
|
|
|
@ -40,5 +40,12 @@ void spi_flash_disable_interrupts_caches_and_other_cpu();
|
|||
// Enable cache, enable interrupts (to be added in future), resume scheduler
|
||||
void spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
|
||||
// Disables non-IRAM interrupt handlers on current CPU and caches on both CPUs.
|
||||
// This function is implied to be called when other CPU is not running or running code from IRAM.
|
||||
void spi_flash_disable_interrupts_caches_and_other_cpu_no_os();
|
||||
|
||||
// Enable cache, enable interrupts on current CPU.
|
||||
// This function is implied to be called when other CPU is not running or running code from IRAM.
|
||||
void spi_flash_enable_interrupts_caches_no_os();
|
||||
|
||||
#endif //ESP_SPI_FLASH_CACHE_UTILS_H
|
||||
|
|
|
@ -60,6 +60,18 @@ static spi_flash_counters_t s_flash_stats;
|
|||
|
||||
static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc);
|
||||
|
||||
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
|
||||
.start = spi_flash_disable_interrupts_caches_and_other_cpu,
|
||||
.end = spi_flash_enable_interrupts_caches_and_other_cpu
|
||||
};
|
||||
|
||||
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
|
||||
.start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
|
||||
.end = spi_flash_enable_interrupts_caches_no_os
|
||||
};
|
||||
|
||||
static const spi_flash_guard_funcs_t *s_flash_guard_ops;
|
||||
|
||||
void spi_flash_init()
|
||||
{
|
||||
spi_flash_init_lock();
|
||||
|
@ -68,6 +80,11 @@ void spi_flash_init()
|
|||
#endif
|
||||
}
|
||||
|
||||
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs)
|
||||
{
|
||||
s_flash_guard_ops = funcs;
|
||||
}
|
||||
|
||||
size_t spi_flash_get_chip_size()
|
||||
{
|
||||
return g_rom_flashchip.chip_size;
|
||||
|
@ -86,6 +103,18 @@ SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
|
|||
return SPI_FLASH_RESULT_OK;
|
||||
}
|
||||
|
||||
static inline void spi_flash_guard_start()
|
||||
{
|
||||
if (s_flash_guard_ops)
|
||||
s_flash_guard_ops->start();
|
||||
}
|
||||
|
||||
static inline void spi_flash_guard_end()
|
||||
{
|
||||
if (s_flash_guard_ops)
|
||||
s_flash_guard_ops->end();
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
|
||||
{
|
||||
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
|
||||
|
@ -106,7 +135,7 @@ esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
|
|||
size_t end = start + size / SPI_FLASH_SEC_SIZE;
|
||||
const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
|
||||
COUNTER_START();
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
SpiFlashOpResult rc;
|
||||
rc = spi_flash_unlock();
|
||||
if (rc == SPI_FLASH_RESULT_OK) {
|
||||
|
@ -122,7 +151,7 @@ esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
|
|||
}
|
||||
}
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
COUNTER_STOP(erase);
|
||||
return spi_flash_translate_rc(rc);
|
||||
}
|
||||
|
@ -160,9 +189,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
|
|||
if (left_size > 0) {
|
||||
uint32_t t = 0xffffffff;
|
||||
memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
rc = SPIWrite(left_off, &t, 4);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
if (rc != SPI_FLASH_RESULT_OK) {
|
||||
goto out;
|
||||
}
|
||||
|
@ -178,9 +207,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
|
|||
bool in_dram = true;
|
||||
#endif
|
||||
if (in_dram && (((uintptr_t) srcc) + mid_off) % 4 == 0) {
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
rc = SPIWrite(dst + mid_off, (const uint32_t *) (srcc + mid_off), mid_size);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
if (rc != SPI_FLASH_RESULT_OK) {
|
||||
goto out;
|
||||
}
|
||||
|
@ -194,9 +223,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
|
|||
uint32_t t[8];
|
||||
uint32_t write_size = MIN(mid_size, sizeof(t));
|
||||
memcpy(t, srcc + mid_off, write_size);
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
rc = SPIWrite(dst + mid_off, t, write_size);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
if (rc != SPI_FLASH_RESULT_OK) {
|
||||
goto out;
|
||||
}
|
||||
|
@ -209,9 +238,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
|
|||
if (right_size > 0) {
|
||||
uint32_t t = 0xffffffff;
|
||||
memcpy(&t, srcc + right_off, right_size);
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
rc = SPIWrite(dst + right_off, &t, 4);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
if (rc != SPI_FLASH_RESULT_OK) {
|
||||
goto out;
|
||||
}
|
||||
|
@ -271,7 +300,7 @@ esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
|
|||
|
||||
SpiFlashOpResult rc = SPI_FLASH_RESULT_OK;
|
||||
COUNTER_START();
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_start();
|
||||
/* To simplify boundary checks below, we handle small reads separately. */
|
||||
if (size < 16) {
|
||||
uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
|
||||
|
@ -345,7 +374,7 @@ esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
|
|||
memcpy(dstc + pad_right_off, t, pad_right_size);
|
||||
}
|
||||
out:
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
spi_flash_guard_end();
|
||||
COUNTER_STOP(read);
|
||||
return spi_flash_translate_rc(rc);
|
||||
}
|
||||
|
|
|
@ -69,6 +69,7 @@ typedef enum {
|
|||
ESP_PARTITION_SUBTYPE_DATA_OTA = 0x00, //!< OTA selection partition
|
||||
ESP_PARTITION_SUBTYPE_DATA_PHY = 0x01, //!< PHY init data partition
|
||||
ESP_PARTITION_SUBTYPE_DATA_NVS = 0x02, //!< NVS partition
|
||||
ESP_PARTITION_SUBTYPE_DATA_COREDUMP = 0x03, //!< COREDUMP partition
|
||||
|
||||
ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD = 0x80, //!< ESPHTTPD partition
|
||||
ESP_PARTITION_SUBTYPE_DATA_FAT = 0x81, //!< FAT partition
|
||||
|
|
|
@ -173,6 +173,49 @@ void spi_flash_munmap(spi_flash_mmap_handle_t handle);
|
|||
*/
|
||||
void spi_flash_mmap_dump();
|
||||
|
||||
/**
|
||||
* @brief SPI flash critical section enter function.
|
||||
*/
|
||||
typedef void (*spi_flash_guard_start_func_t)(void);
|
||||
/**
|
||||
* @brief SPI flash critical section exit function.
|
||||
*/
|
||||
typedef void (*spi_flash_guard_end_func_t)(void);
|
||||
|
||||
/**
|
||||
* Structure holding SPI flash access critical section management functions
|
||||
*
|
||||
* @note Structure and corresponding guard functions should not reside in flash.
|
||||
* For example structure can be placed in DRAM and functions in IRAM sections.
|
||||
*/
|
||||
typedef struct {
|
||||
spi_flash_guard_start_func_t start; /**< critical section start func */
|
||||
spi_flash_guard_end_func_t end; /**< critical section end func */
|
||||
} spi_flash_guard_funcs_t;
|
||||
|
||||
/**
|
||||
* @brief Sets guard functions to access flash.
|
||||
*
|
||||
* @note Pointed structure and corresponding guard functions should not reside in flash.
|
||||
* For example structure can be placed in DRAM and functions in IRAM sections.
|
||||
*
|
||||
* @param funcs pointer to structure holding flash access guard functions.
|
||||
*/
|
||||
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
|
||||
|
||||
/**
|
||||
* @brief Default OS-aware flash access guard functions
|
||||
*/
|
||||
extern const spi_flash_guard_funcs_t g_flash_guard_default_ops;
|
||||
|
||||
/**
|
||||
* @brief Non-OS flash access guard functions
|
||||
*
|
||||
* @note This version of flash guard functions is to be used when no OS is present or from panic handler.
|
||||
* It does not use any OS primitives and IPC and implies that only calling CPU is active.
|
||||
*/
|
||||
extern const spi_flash_guard_funcs_t g_flash_guard_no_os_ops;
|
||||
|
||||
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
|
||||
|
||||
/**
|
||||
|
|
|
@ -35,7 +35,8 @@ INPUT = ../components/esp32/include/esp_wifi.h \
|
|||
../components/esp32/include/esp_deep_sleep.h \
|
||||
../components/sdmmc/include/sdmmc_cmd.h \
|
||||
../components/fatfs/src/esp_vfs_fat.h \
|
||||
../components/fatfs/src/diskio.h
|
||||
../components/fatfs/src/diskio.h \
|
||||
../components/esp32/include/esp_core_dump.h
|
||||
|
||||
## Get warnings for functions that have no documentation for their parameters or return value
|
||||
##
|
||||
|
|
|
@ -0,0 +1,81 @@
|
|||
ESP32 Core Dump
|
||||
===============
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
ESP-IDF provides support to generate core dumps on unrecoverable software errors. This useful technique allows post-mortem analysis of software state at the moment of failure.
|
||||
Upon the crash system enters panic state, prints some information and halts or reboots depending configuration. User can choose to generate core dump in order to analyse
|
||||
the reason of failure on PC later on. Core dump contains snapshots of all tasks in the system at the moment of failure. Snapshots include tasks control blocks (TCB) and stacks.
|
||||
So it is possible to find out what task, at what instruction (line of code) and what callstack of that task lead to the crash.
|
||||
ESP-IDF provides special script `espcoredump.py` to help users to retrieve and analyse core dumps. This tool provides two commands for core dumps analysis:
|
||||
|
||||
* info_corefile - prints crashed task's registers, callstack, list of available tasks in the system, memory regions and contents of memory stored in core dump (TCBs and stacks)
|
||||
* dbg_corefile - creates core dump ELF file and runs GDB debug session with this file. User can examine memory, variables and tasks states manually. Note that since not all memory is saved in core dump only values of variables allocated on stack will be meaningfull
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
Currently there are three options related to core dump generation which user can choose in configuration menu of the application (`make menuconfig`):
|
||||
|
||||
* Disable core dump generation
|
||||
* Save core dump to flash
|
||||
* Print core dump to UART
|
||||
|
||||
These options can be choosen in Components -> ESP32-specific config -> Core dump destination menu item.
|
||||
|
||||
Save core dump to flash
|
||||
-----------------------
|
||||
|
||||
When this option is selected core dumps are saved to special partition on flash. When using default partition table files which are provided with ESP-IDF it automatically
|
||||
allocates necessary space on flash, But if user wants to use its own layout file together with core dump feature it should define separate partition for core dump
|
||||
as it is shown below::
|
||||
|
||||
# Name, Type, SubType, Offset, Size
|
||||
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
|
||||
nvs, data, nvs, 0x9000, 0x6000
|
||||
phy_init, data, phy, 0xf000, 0x1000
|
||||
factory, app, factory, 0x10000, 1M
|
||||
coredump, data, coredump,, 64K
|
||||
|
||||
There are no special requrements for partition name. It can be choosen according to the user application needs, but partition type should be 'data' and
|
||||
sub-type should be 'coredump'. Also when choosing partition size note that core dump data structure introduces constant overhead of 20 bytes and per-task overhead of 12 bytes.
|
||||
This overhead does not include size of TCB and stack for every task. So partirion size should be at least 20 + max tasks number x (12 + TCB size + max task stack size) bytes.
|
||||
|
||||
The example of generic command to analyze core dump from flash is: `espcoredump.py -p </path/to/serial/port> info_corefile </path/to/program/elf/file>`
|
||||
or `espcoredump.py -p </path/to/serial/port> dbg_corefile </path/to/program/elf/file>`
|
||||
|
||||
Print core dump to UART
|
||||
-----------------------
|
||||
|
||||
When this option is selected base64-encoded core dumps are printed on UART upon system panic. In this case user should save core dump text body to some file manually and
|
||||
then run the following command: `espcoredump.py -p </path/to/serial/port> info_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
|
||||
or `espcoredump.py -p </path/to/serial/port> dbg_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
|
||||
|
||||
Base64-encoded body of core dump will be between the following header and footer::
|
||||
|
||||
================= CORE DUMP START =================
|
||||
<body of base64-encoded core dump, save it to file on disk>
|
||||
================= CORE DUMP END ===================
|
||||
|
||||
Running 'espcoredump.py'
|
||||
------------------------------------
|
||||
|
||||
Generic command syntax:
|
||||
|
||||
`espcoredump.py [options] command [args]`
|
||||
|
||||
:Script Options:
|
||||
* --chip,-c {auto,esp32}. Target chip type. Supported values are `auto` and `esp32`.
|
||||
* --port,-p PORT. Serial port device.
|
||||
* --baud,-b BAUD. Serial port baud rate used when flashing/reading.
|
||||
:Commands:
|
||||
* info_corefile. Retrieve core dump and print useful info.
|
||||
* dbg_corefile. Retrieve core dump and start GDB session with it.
|
||||
:Command Arguments:
|
||||
* --gdb,-g GDB. Path to gdb to use for data retrieval.
|
||||
* --core,-c CORE. Path to core dump file to use (if skipped core dump will be read from flash).
|
||||
* --core-format,-t CORE_FORMAT. Specifies that file passed with "-c" is an ELF ("elf"), dumped raw binary ("raw") or base64-encoded ("b64") format.
|
||||
* --off,-o OFF. Ofsset of coredump partition in flash (type "make partition_table" to see it).
|
||||
* --save-core,-s SAVE_CORE. Save core to file. Othwerwise temporary core file will be deleted. Ignored with "-c".
|
||||
* --print-mem,-m Print memory dump. Used only with "info_corefile".
|
|
@ -35,6 +35,7 @@ Contents:
|
|||
partition-tables
|
||||
build_system
|
||||
openocd
|
||||
core_dump
|
||||
Flash encryption <security/flash-encryption>
|
||||
Secure Boot <security/secure-boot>
|
||||
ULP coprocessor <api/ulp.rst>
|
||||
|
|
Ładowanie…
Reference in New Issue