Merge branch 'feature/esp32_core_dump' into 'master'

esp32 core dump to flash

1.  menuconfig option to select where to store core dump: flash, uart or disable
2. Saving of core dump to flash
3. Partition table definitions files with core dump partition
4. Python scripts to support core dump generation from GDB command line

See merge request !341
pull/240/head
Ivan Grokhotkov 2017-01-13 11:51:40 +08:00
commit ca9f62ad77
25 zmienionych plików z 2177 dodań i 31 usunięć

Wyświetl plik

@ -54,6 +54,47 @@ config TRACEMEM_RESERVE_DRAM
default 0x4000 if MEMMAP_TRACEMEM && !MEMMAP_TRACEMEM_TWOBANKS
default 0x0
choice ESP32_COREDUMP_TO_FLASH_OR_UART
prompt "Core dump destination"
default ESP32_ENABLE_COREDUMP_TO_NONE
help
Select place to store core dump: flash, uart or none (to disable core dumps generation).
If core dump is configured to be stored in flash and custom partition table is used add
corresponding entry to your CSV. For examples, please see predefined partition table CSV descriptions
in the components/partition_table directory.
config ESP32_ENABLE_COREDUMP_TO_FLASH
bool "Flash"
select ESP32_ENABLE_COREDUMP
config ESP32_ENABLE_COREDUMP_TO_UART
bool "UART"
select ESP32_ENABLE_COREDUMP
config ESP32_ENABLE_COREDUMP_TO_NONE
bool "None"
endchoice
config ESP32_ENABLE_COREDUMP
bool
default F
help
Enables/disable core dump module.
config ESP32_CORE_DUMP_UART_DELAY
int "Core dump print to UART delay"
depends on ESP32_ENABLE_COREDUMP_TO_UART
default 0
help
Config delay (in ms) before printing core dump to UART.
Delay can be interrupted by pressing Enter key.
config ESP32_CORE_DUMP_LOG_LEVEL
int "Core dump module logging level"
depends on ESP32_ENABLE_COREDUMP
default 1
help
Config core dump module logging level (0-5).
# Not implemented and/or needs new silicon rev to work
config MEMMAP_SPISRAM
bool "Use external SPI SRAM chip as main memory"

Wyświetl plik

@ -0,0 +1,474 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "soc/uart_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "driver/gpio.h"
#include "esp_panic.h"
#include "esp_partition.h"
#if CONFIG_ESP32_ENABLE_COREDUMP
#define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
#include "esp_log.h"
const static char *TAG = "esp_core_dump";
#define ESP_COREDUMP_LOGE( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) { ets_printf(LOG_FORMAT(E, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGW( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) { ets_printf(LOG_FORMAT(W, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGI( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) { ets_printf(LOG_FORMAT(I, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGD( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#define ESP_COREDUMP_LOGV( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_VERBOSE) { ets_printf(LOG_FORMAT(V, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
#else
#define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
#endif
// TODO: allow user to set this in menuconfig or get tasks iteratively
#define COREDUMP_MAX_TASKS_NUM 32
typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
typedef struct _core_dump_write_config_t
{
esp_core_dump_write_prepare_t prepare;
esp_core_dump_write_start_t start;
esp_core_dump_write_end_t end;
esp_core_dump_flash_write_data_t write;
void * priv;
} core_dump_write_config_t;
static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
{
union
{
uint8_t data8[12];
uint32_t data32[3];
} rom_data;
esp_err_t err;
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
UBaseType_t tcb_sz, task_num;
uint32_t data_len = 0, i, len;
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
// take TCB padding into account, actual TCB size will be stored in header
if (tcb_sz % sizeof(uint32_t))
len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
else
len = tcb_sz;
// header + tasknum*(tcb + stack start/end + tcb addr)
data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
for (i = 0; i < task_num; i++) {
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
// set correct stack top for current task
tasks[i].pxTopOfStack = (StackType_t *)frame;
ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
}
else {
XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
if (task_frame->exit == 0) {
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
}
else {
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
#endif
ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
}
}
#if( portSTACK_GROWTH < 0 )
len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
#else
len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
#endif
ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
// take stack padding into account
if (len % sizeof(uint32_t))
len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
data_len += len;
}
// prepare write
if (write_cfg->prepare) {
err = write_cfg->prepare(write_cfg->priv, &data_len);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
return;
}
}
ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu", data_len);
// write start
if (write_cfg->start) {
err = write_cfg->start(write_cfg->priv);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
return;
}
}
// write header
rom_data.data32[0] = data_len;
rom_data.data32[1] = task_num;
rom_data.data32[2] = tcb_sz;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
return;
}
// write tasks
for (i = 0; i < task_num; i++) {
ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
// save TCB address, stack base and stack top addr
rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
return;
}
// save TCB
err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
return;
}
// save task stack
err = write_cfg->write(write_cfg->priv,
#if( portSTACK_GROWTH < 0 )
tasks[i].pxTopOfStack,
(uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack
#else
tasks[i].pxEndOfStack,
(uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
#endif
);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
return;
}
}
// write end
if (write_cfg->end) {
err = write_cfg->end(write_cfg->priv);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
return;
}
}
}
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
// magic numbers to control core dump data consistency
#define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
#define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
typedef struct _core_dump_write_flash_data_t
{
uint32_t off;
} core_dump_write_flash_data_t;
// core dump partition start
static uint32_t s_core_part_start;
// core dump partition size
static uint32_t s_core_part_size;
static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
{
esp_err_t err;
uint32_t data_len = 0, k, len;
union
{
uint8_t data8[4];
uint32_t data32;
} rom_data;
data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
err = spi_flash_write(off, data, data_len);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
return 0;
}
len = data_size % sizeof(uint32_t);
if (len) {
// write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
rom_data.data32 = 0;
for (k = 0; k < len; k++)
rom_data.data8[k] = *(data + data_len + k);
err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
return 0;
}
data_len += sizeof(uint32_t);
}
return data_len;
}
static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
{
esp_err_t err;
uint32_t sec_num;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// add space for 2 magics. TODO: change to CRC
if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) {
ESP_COREDUMP_LOGE("Not enough space to save core dump!");
return ESP_ERR_NO_MEM;
}
*data_len += 2*sizeof(uint32_t);
wr_data->off = 0;
sec_num = *data_len / SPI_FLASH_SEC_SIZE;
if (*data_len % SPI_FLASH_SEC_SIZE)
sec_num++;
err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
return err;
}
return err;
}
static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
{
esp_err_t err = ESP_OK;
uint32_t data32 = word;
err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
return err;
}
wr_data->off += sizeof(uint32_t);
return err;
}
static esp_err_t esp_core_dump_flash_write_start(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// save magic 1
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
}
static esp_err_t esp_core_dump_flash_write_end(void *priv)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
#if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
uint32_t i;
union
{
uint8_t data8[16];
uint32_t data32[4];
} rom_data;
esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
if (err != ESP_OK) {
ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
return err;
}
else {
ESP_COREDUMP_LOG_PROCESS("Data from flash:");
for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
}
}
#endif
// save magic 2
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
}
static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len);
if (len != data_len)
return ESP_FAIL;
wr_data->off += len;
return err;
}
void esp_core_dump_to_flash(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
core_dump_write_flash_data_t wr_data;
/* init non-OS flash access critical section */
spi_flash_guard_set(&g_flash_guard_no_os_ops);
wr_cfg.prepare = esp_core_dump_flash_write_prepare;
wr_cfg.start = esp_core_dump_flash_write_start;
wr_cfg.end = esp_core_dump_flash_write_end;
wr_cfg.write = esp_core_dump_flash_write_data;
wr_cfg.priv = &wr_data;
ESP_COREDUMP_LOGI("Save core dump to flash...");
esp_core_dump_write(frame, &wr_cfg);
ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
}
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
static const char *b64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int i, j, a, b, c;
for (i = j = 0; i < src_len; i += 3) {
a = src[i];
b = i + 1 >= src_len ? 0 : src[i + 1];
c = i + 2 >= src_len ? 0 : src[i + 2];
dst[j++] = b64[a >> 2];
dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
if (i + 1 < src_len) {
dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
}
if (i + 2 < src_len) {
dst[j++] = b64[c & 0x3F];
}
}
while (j % 4 != 0) {
dst[j++] = '=';
}
dst[j++] = '\0';
}
static esp_err_t esp_core_dump_uart_write_start(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP START =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_end(void *priv)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP END =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
{
esp_err_t err = ESP_OK;
char buf[64 + 4], *addr = data;
char *end = addr + data_len;
while (addr < end) {
size_t len = end - addr;
if (len > 48) len = 48;
/* Copy to stack to avoid alignment restrictions. */
char *tmp = buf + (sizeof(buf) - len);
memcpy(tmp, addr, len);
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
addr += len;
ets_printf("%s\r\n", buf);
}
return err;
}
static int esp_core_dump_uart_get_char() {
int i;
uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (reg)
i = READ_PERI_REG(UART_FIFO_REG(0));
else
i = -1;
return i;
}
void esp_core_dump_to_uart(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
uint32_t tm_end, tm_cur;
int ch;
wr_cfg.prepare = NULL;
wr_cfg.start = esp_core_dump_uart_write_start;
wr_cfg.end = esp_core_dump_uart_write_end;
wr_cfg.write = esp_core_dump_uart_write_data;
wr_cfg.priv = NULL;
//Make sure txd/rxd are enabled
gpio_pullup_dis(1);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
ch = esp_core_dump_uart_get_char();
while (!(ch == '\n' || ch == '\r')) {
tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
if (tm_cur >= tm_end)
break;
/* Feed the Cerberus. */
TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
TIMERG0.wdt_feed = 1;
TIMERG0.wdt_wprotect = 0;
ch = esp_core_dump_uart_get_char();
}
ESP_COREDUMP_LOGI("Print core dump to uart...");
esp_core_dump_write(frame, &wr_cfg);
ESP_COREDUMP_LOGI("Core dump has been written to uart.");
}
#endif
void esp_core_dump_init()
{
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
const esp_partition_t *core_part;
ESP_LOGI(TAG, "Init core dump to flash");
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
if (!core_part) {
ESP_LOGE(TAG, "No core dump partition found!");
return;
}
ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
s_core_part_start = core_part->address;
s_core_part_size = core_part->size;
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
ESP_LOGI(TAG, "Init core dump to UART");
#endif
}
#endif

Wyświetl plik

@ -55,6 +55,7 @@
#include "esp_task_wdt.h"
#include "esp_phy_init.h"
#include "esp_coexist.h"
#include "esp_core_dump.h"
#include "trax.h"
#define STRINGIFY(s) STRINGIFY2(s)
@ -202,6 +203,8 @@ void start_cpu0_default(void)
#endif
esp_ipc_init();
spi_flash_init();
/* init default OS-aware flash access critical section */
spi_flash_guard_set(&g_flash_guard_default_ops);
#if CONFIG_ESP32_PHY_AUTO_INIT
nvs_flash_init();
@ -214,6 +217,10 @@ void start_cpu0_default(void)
}
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP
esp_core_dump_init();
#endif
xTaskCreatePinnedToCore(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, NULL, 0);

Wyświetl plik

@ -0,0 +1,64 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ESP_CORE_DUMP_H_
#define ESP_CORE_DUMP_H_
/**
* @brief Initializes core dump module internal data.
*
* @note Should be called at system startup.
*/
void esp_core_dump_init();
/**
* @brief Saves core dump to flash.
*
* The structure of data stored in flash is as follows:
* | MAGIC1 |
* | TOTAL_LEN | TASKS_NUM | TCB_SIZE |
* | TCB_ADDR_1 | STACK_TOP_1 | STACK_END_1 | TCB_1 | STACK_1 |
* . . . .
* . . . .
* | TCB_ADDR_N | STACK_TOP_N | STACK_END_N | TCB_N | STACK_N |
* | MAGIC2 |
* Core dump in flash consists of header and data for every task in the system at the moment of crash.
* For flash data integrity control two magic numbers are used at the beginning and the end of core dump.
* The structure of core dump data is described below in details.
* 1) MAGIC1 and MAGIC2 are special numbers stored at the beginning and the end of core dump.
* They are used to control core dump data integrity. Size of every number is 4 bytes.
* 2) Core dump starts with header:
* 2.1) TOTAL_LEN is total length of core dump data in flash including magic numbers. Size is 4 bytes.
* 2.2) TASKS_NUM is the number of tasks for which data are stored. Size is 4 bytes.
* 2.3) TCB_SIZE is the size of task's TCB structure. Size is 4 bytes.
* 3) Core dump header is followed by the data for every task in the system.
* Task data are started with task header:
* 3.1) TCB_ADDR is the address of TCB in memory. Size is 4 bytes.
* 3.2) STACK_TOP is the top of task's stack (address of the topmost stack item). Size is 4 bytes.
* 3.2) STACK_END is the end of task's stack (address from which task's stack starts). Size is 4 bytes.
* 4) Task header is followed by TCB data. Size is TCB_SIZE bytes.
* 5) Task's stack is placed after TCB data. Size is (STACK_END - STACK_TOP) bytes.
*/
void esp_core_dump_to_flash();
/**
* @brief Print base64-encoded core dump to UART.
*
* The structure of core dump data is the same as for data stored in flash (@see esp_core_dump_to_flash) with some notes:
* 1) Magic numbers are not present in core dump printed to UART.
* 2) Since magic numbers are omitted TOTAL_LEN does not include their size.
* 3) Printed base64 data are surrounded with special messages to help user recognize the start and end of actual data.
*/
void esp_core_dump_to_uart();
#endif

Wyświetl plik

@ -33,6 +33,7 @@
#include "esp_panic.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_core_dump.h"
/*
Panic handlers; these get called when an unhandled exception occurs or the assembly-level
@ -46,13 +47,13 @@
#if !CONFIG_ESP32_PANIC_SILENT_REBOOT
//printf may be broken, so we fix our own printing fns...
inline static void panicPutChar(char c)
static void panicPutChar(char c)
{
while (((READ_PERI_REG(UART_STATUS_REG(0)) >> UART_TXFIFO_CNT_S)&UART_TXFIFO_CNT) >= 126) ;
WRITE_PERI_REG(UART_FIFO_REG(0), c);
}
inline static void panicPutStr(const char *c)
static void panicPutStr(const char *c)
{
int x = 0;
while (c[x] != 0) {
@ -61,7 +62,7 @@ inline static void panicPutStr(const char *c)
}
}
inline static void panicPutHex(int a)
static void panicPutHex(int a)
{
int x;
int c;
@ -76,7 +77,7 @@ inline static void panicPutHex(int a)
}
}
inline static void panicPutDec(int a)
static void panicPutDec(int a)
{
int n1, n2;
n1 = a % 10;
@ -90,10 +91,10 @@ inline static void panicPutDec(int a)
}
#else
//No printing wanted. Stub out these functions.
inline static void panicPutChar(char c) { }
inline static void panicPutStr(const char *c) { }
inline static void panicPutHex(int a) { }
inline static void panicPutDec(int a) { }
static void panicPutChar(char c) { }
static void panicPutStr(const char *c) { }
static void panicPutHex(int a) { }
static void panicPutDec(int a) { }
#endif
void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, signed char *pcTaskName )
@ -301,7 +302,7 @@ static void putEntry(uint32_t pc, uint32_t sp)
static void doBacktrace(XtExcFrame *frame)
{
uint32_t i = 0, pc = frame->pc, sp = frame->a1;
panicPutStr("\nBacktrace:");
panicPutStr("\r\nBacktrace:");
/* Do not check sanity on first entry, PC could be smashed. */
putEntry(pc, sp);
pc = frame->a0;
@ -317,7 +318,7 @@ static void doBacktrace(XtExcFrame *frame)
break;
}
}
panicPutStr("\n\n");
panicPutStr("\r\n\r\n");
}
/*
@ -351,8 +352,8 @@ static void commonErrorHandler(XtExcFrame *frame)
panicPutHex(regs[x + y + 1]);
panicPutStr(" ");
}
panicPutStr("\r\n");
}
panicPutStr("\r\n");
}
}
@ -363,7 +364,14 @@ static void commonErrorHandler(XtExcFrame *frame)
disableAllWdts();
panicPutStr("Entering gdb stub now.\r\n");
esp_gdbstub_panic_handler(frame);
#elif CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
#else
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
esp_core_dump_to_flash(frame);
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART && !CONFIG_ESP32_PANIC_SILENT_REBOOT
esp_core_dump_to_uart(frame);
#endif
#if CONFIG_ESP32_PANIC_PRINT_REBOOT || CONFIG_ESP32_PANIC_SILENT_REBOOT
panicPutStr("Rebooting...\r\n");
for (x = 0; x < 100; x++) {
ets_delay_us(1000);
@ -374,6 +382,7 @@ static void commonErrorHandler(XtExcFrame *frame)
panicPutStr("CPU halted.\r\n");
while (1);
#endif
#endif
}

Plik diff jest za duży Load Diff

Wyświetl plik

@ -0,0 +1,105 @@
/* Application For Core Dumps Generation
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "nvs_flash.h"
// task crash indicators
#define TCI_NULL_PTR 0x1
#define TCI_UNALIGN_PTR 0x2
#define TCI_FAIL_ASSERT 0x4
volatile unsigned long crash_flags = TCI_UNALIGN_PTR;
void bad_ptr_func()
{
unsigned long *ptr = (unsigned long *)0;
volatile int cnt;
int i = 0;
for (i = 0; i < 1000; i++) {
cnt++;
}
if(crash_flags & TCI_NULL_PTR) {
printf("Write to bad address 0x%lx.\n", (unsigned long)ptr);
*ptr = 0xDEADBEEF;
}
}
void bad_ptr_task(void *pvParameter)
{
printf("Task 'bad_ptr_task' start.\n");
while (1) {
vTaskDelay(1000 / portTICK_RATE_MS);
printf("Task 'bad_ptr_task' run.\n");
bad_ptr_func();
}
fflush(stdout);
}
void recur_func()
{
static int rec_cnt;
unsigned short *ptr = (unsigned short *)0x5;
volatile int cnt;
int i = 0;
if (rec_cnt++ > 2) {
return;
}
for (i = 0; i < 4; i++) {
cnt++;
if(i == 2) {
recur_func();
break;
}
}
if(crash_flags & TCI_UNALIGN_PTR) {
printf("Write to unaligned address 0x%lx.\n", (unsigned long)ptr);
*ptr = 0xDEAD;
}
}
void unaligned_ptr_task(void *pvParameter)
{
printf("Task 'unaligned_ptr_task' start.\n");
while (1) {
vTaskDelay(1000 / portTICK_RATE_MS);
printf("Task 'unaligned_ptr_task' run.\n");
recur_func();
}
fflush(stdout);
}
void failed_assert_task(void *pvParameter)
{
printf("Task 'failed_assert_task' start.\n");
while (1) {
vTaskDelay(1000 / portTICK_RATE_MS);
printf("Task 'failed_assert_task' run.\n");
if(crash_flags & TCI_FAIL_ASSERT) {
printf("Assert.\n");
assert(0);
}
}
fflush(stdout);
}
void app_main()
{
nvs_flash_init();
xTaskCreate(&bad_ptr_task, "bad_ptr_task", 2048, NULL, 5, NULL);
xTaskCreatePinnedToCore(&unaligned_ptr_task, "unaligned_ptr_task", 2048, NULL, 7, NULL, 1);
xTaskCreatePinnedToCore(&failed_assert_task, "failed_assert_task", 2048, NULL, 10, NULL, 0);
}

Wyświetl plik

@ -863,8 +863,8 @@ typedef struct xSTATIC_TCB
void *pxDummy6;
uint8_t ucDummy7[ configMAX_TASK_NAME_LEN ];
UBaseType_t uxDummyCoreId;
#if ( portSTACK_GROWTH > 0 )
void *pxDummy8;
#if ( portSTACK_GROWTH > 0 || configENABLE_TASK_SNAPSHOT == 1 )
void *pxDummy8;
#endif
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
UBaseType_t uxDummy9;

Wyświetl plik

@ -268,7 +268,9 @@
#define configXT_BOARD 1 /* Board mode */
#define configXT_SIMULATOR 0
#if CONFIG_ESP32_ENABLE_COREDUMP
#define configENABLE_TASK_SNAPSHOT 1
#endif
#endif /* FREERTOS_CONFIG_H */

Wyświetl plik

@ -181,6 +181,18 @@ typedef struct xTASK_STATUS
uint16_t usStackHighWaterMark; /* The minimum amount of stack space that has remained for the task since the task was created. The closer this value is to zero the closer the task has come to overflowing its stack. */
} TaskStatus_t;
/*
* Used with the uxTaskGetSnapshotAll() function to save memory snapshot of each task in the system.
* We need this struct because TCB_t is defined (hidden) in tasks.c.
*/
typedef struct xTASK_SNAPSHOT
{
void *pxTCB; /* Address of task control block. */
StackType_t *pxTopOfStack; /* Points to the location of the last item placed on the tasks stack. */
StackType_t *pxEndOfStack; /* Points to the end of the stack. pxTopOfStack < pxEndOfStack, stack grows hi2lo
pxTopOfStack > pxEndOfStack, stack grows lo2hi*/
} TaskSnapshot_t;
/* Possible return values for eTaskConfirmSleepModeStatus(). */
typedef enum
{
@ -2173,6 +2185,17 @@ eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;
*/
void *pvTaskIncrementMutexHeldCount( void );
/*
* This function fills array with TaskSnapshot_t structures for every task in the system.
* Used by core dump facility to get snapshots of all tasks in the system.
* Only available when configENABLE_TASK_SNAPSHOT is set to 1.
* @param pxTaskSnapshotArray Pointer to array of TaskSnapshot_t structures to store tasks snapshot data.
* @param uxArraySize Size of tasks snapshots array.
* @param pxTcbSz Pointer to store size of TCB.
* @return Number of elements stored in array.
*/
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz );
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -181,7 +181,7 @@ typedef struct tskTaskControlBlock
char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
BaseType_t xCoreID; /*< Core this task is pinned to */
/* If this moves around (other than pcTaskName size changes), please change the define in xtensa_vectors.S as well. */
#if ( portSTACK_GROWTH > 0 )
#if ( portSTACK_GROWTH > 0 || configENABLE_TASK_SNAPSHOT == 1 )
StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
#endif
@ -885,6 +885,12 @@ UBaseType_t x;
/* Check the alignment of the calculated top of stack is correct. */
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
#if ( configENABLE_TASK_SNAPSHOT == 1 )
{
/* need stack end for core dumps */
pxNewTCB->pxEndOfStack = pxTopOfStack;
}
#endif
}
#else /* portSTACK_GROWTH */
{
@ -4912,6 +4918,82 @@ TickType_t uxReturn;
#endif /* configUSE_TASK_NOTIFICATIONS */
#if ( configENABLE_TASK_SNAPSHOT == 1 )
static void prvTaskGetSnapshotsFromList( TaskSnapshot_t *pxTaskSnapshotArray, UBaseType_t *uxTask, const UBaseType_t uxArraySize, List_t *pxList )
{
TCB_t *pxNextTCB, *pxFirstTCB;
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
{
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
do
{
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
if( *uxTask >= uxArraySize )
break;
pxTaskSnapshotArray[ *uxTask ].pxTCB = pxNextTCB;
pxTaskSnapshotArray[ *uxTask ].pxTopOfStack = (StackType_t *)pxNextTCB->pxTopOfStack;
#if( portSTACK_GROWTH < 0 )
{
pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxNextTCB->pxEndOfStack;
}
#else
{
pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxNextTCB->pxStack;
}
#endif
(*uxTask)++;
} while( pxNextTCB != pxFirstTCB );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz )
{
UBaseType_t uxTask = 0, i = 0;
*pxTcbSz = sizeof(TCB_t);
{
/* Fill in an TaskStatus_t structure with information on each
task in the Ready state. */
i = configMAX_PRIORITIES;
do
{
i--;
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( pxReadyTasksLists[ i ] ) );
} while( i > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
/* Fill in an TaskStatus_t structure with information on each
task in the Blocked state. */
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxDelayedTaskList );
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxOverflowDelayedTaskList );
#if( INCLUDE_vTaskDelete == 1 )
{
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xTasksWaitingTermination );
}
#endif
#if ( INCLUDE_vTaskSuspend == 1 )
{
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xSuspendedTaskList );
}
#endif
}
return uxTask;
}
#endif
#ifdef FREERTOS_MODULE_TEST
#include "tasks_test_access_functions.h"
#endif

Wyświetl plik

@ -75,6 +75,16 @@ void esp_log_set_vprintf(vprintf_like_t func);
*/
uint32_t esp_log_timestamp(void);
/**
* @brief Function which returns timestamp to be used in log output
*
* This function uses HW cycle counter and does not depend on OS,
* so it can be safely used after application crash.
*
* @return timestamp, in milliseconds
*/
uint32_t esp_log_early_timestamp(void);
/**
* @brief Write message into the log
*

Wyświetl plik

@ -45,8 +45,10 @@ config PARTITION_TABLE_CUSTOM_PHY_DATA_OFFSET
config PARTITION_TABLE_FILENAME
string
default partitions_singleapp.csv if PARTITION_TABLE_SINGLE_APP
default partitions_two_ota.csv if PARTITION_TABLE_TWO_OTA
default partitions_singleapp.csv if PARTITION_TABLE_SINGLE_APP && !ESP32_ENABLE_COREDUMP_TO_FLASH
default partitions_singleapp_coredump.csv if PARTITION_TABLE_SINGLE_APP && ESP32_ENABLE_COREDUMP_TO_FLASH
default partitions_two_ota.csv if PARTITION_TABLE_TWO_OTA && !ESP32_ENABLE_COREDUMP_TO_FLASH
default partitions_two_ota_coredump.csv if PARTITION_TABLE_TWO_OTA && ESP32_ENABLE_COREDUMP_TO_FLASH
default PARTITION_TABLE_CUSTOM_FILENAME if PARTITION_TABLE_CUSTOM
config APP_OFFSET

Wyświetl plik

@ -127,6 +127,7 @@ class PartitionDefinition(object):
"ota" : 0x00,
"phy" : 0x01,
"nvs" : 0x02,
"coredump" : 0x03,
"esphttpd" : 0x80,
"fat" : 0x81,
"spiffs" : 0x82,

Wyświetl plik

@ -0,0 +1,6 @@
# Name, Type, SubType, Offset, Size
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
coredump, data, coredump,, 64K
1 # Name, Type, SubType, Offset, Size
2 # Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
3 nvs, data, nvs, 0x9000, 0x6000
4 phy_init, data, phy, 0xf000, 0x1000
5 factory, app, factory, 0x10000, 1M
6 coredump, data, coredump,, 64K

Wyświetl plik

@ -0,0 +1,9 @@
# Name, Type, SubType, Offset, Size
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
nvs, data, nvs, 0x9000, 0x4000
otadata, data, ota, 0xd000, 0x2000
phy_init, data, phy, 0xf000, 0x1000
factory, 0, 0, 0x10000, 1M
coredump, data, coredump,, 64K
ota_0, 0, ota_0, , 1M
ota_1, 0, ota_1, , 1M
1 # Name, Type, SubType, Offset, Size
2 # Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
3 nvs, data, nvs, 0x9000, 0x4000
4 otadata, data, ota, 0xd000, 0x2000
5 phy_init, data, phy, 0xf000, 0x1000
6 factory, 0, 0, 0x10000, 1M
7 coredump, data, coredump,, 64K
8 ota_0, 0, ota_0, , 1M
9 ota_1, 0, ota_1, , 1M

Wyświetl plik

@ -141,6 +141,29 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
esp_intr_noniram_enable();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
{
const uint32_t cpuid = xPortGetCoreID();
const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0;
// do not care about other CPU, it was halted upon entering panic handler
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
// Kill interrupts that aren't located in IRAM
esp_intr_noniram_disable();
// Disable cache on this CPU as well
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
{
const uint32_t cpuid = xPortGetCoreID();
// Re-enable cache on this CPU
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
}
#else // CONFIG_FREERTOS_UNICORE
void spi_flash_init_lock()
@ -172,6 +195,22 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
esp_intr_noniram_enable();
}
void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os()
{
// Kill interrupts that aren't located in IRAM
esp_intr_noniram_disable();
// Disable cache on this CPU as well
spi_flash_disable_cache(0, &s_flash_op_cache_state[0]);
}
void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os()
{
// Re-enable cache on this CPU
spi_flash_restore_cache(0, s_flash_op_cache_state[0]);
// Re-enable non-iram interrupts
esp_intr_noniram_enable();
}
#endif // CONFIG_FREERTOS_UNICORE
/**

Wyświetl plik

@ -40,5 +40,12 @@ void spi_flash_disable_interrupts_caches_and_other_cpu();
// Enable cache, enable interrupts (to be added in future), resume scheduler
void spi_flash_enable_interrupts_caches_and_other_cpu();
// Disables non-IRAM interrupt handlers on current CPU and caches on both CPUs.
// This function is implied to be called when other CPU is not running or running code from IRAM.
void spi_flash_disable_interrupts_caches_and_other_cpu_no_os();
// Enable cache, enable interrupts on current CPU.
// This function is implied to be called when other CPU is not running or running code from IRAM.
void spi_flash_enable_interrupts_caches_no_os();
#endif //ESP_SPI_FLASH_CACHE_UTILS_H

Wyświetl plik

@ -60,6 +60,18 @@ static spi_flash_counters_t s_flash_stats;
static esp_err_t spi_flash_translate_rc(SpiFlashOpResult rc);
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu,
.end = spi_flash_enable_interrupts_caches_and_other_cpu
};
const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
.start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
.end = spi_flash_enable_interrupts_caches_no_os
};
static const spi_flash_guard_funcs_t *s_flash_guard_ops;
void spi_flash_init()
{
spi_flash_init_lock();
@ -68,6 +80,11 @@ void spi_flash_init()
#endif
}
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs)
{
s_flash_guard_ops = funcs;
}
size_t spi_flash_get_chip_size()
{
return g_rom_flashchip.chip_size;
@ -86,6 +103,18 @@ SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
return SPI_FLASH_RESULT_OK;
}
static inline void spi_flash_guard_start()
{
if (s_flash_guard_ops)
s_flash_guard_ops->start();
}
static inline void spi_flash_guard_end()
{
if (s_flash_guard_ops)
s_flash_guard_ops->end();
}
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
{
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
@ -106,7 +135,7 @@ esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
size_t end = start + size / SPI_FLASH_SEC_SIZE;
const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
COUNTER_START();
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
SpiFlashOpResult rc;
rc = spi_flash_unlock();
if (rc == SPI_FLASH_RESULT_OK) {
@ -122,7 +151,7 @@ esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
}
}
}
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
COUNTER_STOP(erase);
return spi_flash_translate_rc(rc);
}
@ -160,9 +189,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
if (left_size > 0) {
uint32_t t = 0xffffffff;
memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
rc = SPIWrite(left_off, &t, 4);
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
@ -178,9 +207,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
bool in_dram = true;
#endif
if (in_dram && (((uintptr_t) srcc) + mid_off) % 4 == 0) {
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, (const uint32_t *) (srcc + mid_off), mid_size);
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
@ -194,9 +223,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
uint32_t t[8];
uint32_t write_size = MIN(mid_size, sizeof(t));
memcpy(t, srcc + mid_off, write_size);
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
rc = SPIWrite(dst + mid_off, t, write_size);
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
@ -209,9 +238,9 @@ esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
if (right_size > 0) {
uint32_t t = 0xffffffff;
memcpy(&t, srcc + right_off, right_size);
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
rc = SPIWrite(dst + right_off, &t, 4);
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
if (rc != SPI_FLASH_RESULT_OK) {
goto out;
}
@ -271,7 +300,7 @@ esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
SpiFlashOpResult rc = SPI_FLASH_RESULT_OK;
COUNTER_START();
spi_flash_disable_interrupts_caches_and_other_cpu();
spi_flash_guard_start();
/* To simplify boundary checks below, we handle small reads separately. */
if (size < 16) {
uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
@ -345,7 +374,7 @@ esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
memcpy(dstc + pad_right_off, t, pad_right_size);
}
out:
spi_flash_enable_interrupts_caches_and_other_cpu();
spi_flash_guard_end();
COUNTER_STOP(read);
return spi_flash_translate_rc(rc);
}

Wyświetl plik

@ -69,6 +69,7 @@ typedef enum {
ESP_PARTITION_SUBTYPE_DATA_OTA = 0x00, //!< OTA selection partition
ESP_PARTITION_SUBTYPE_DATA_PHY = 0x01, //!< PHY init data partition
ESP_PARTITION_SUBTYPE_DATA_NVS = 0x02, //!< NVS partition
ESP_PARTITION_SUBTYPE_DATA_COREDUMP = 0x03, //!< COREDUMP partition
ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD = 0x80, //!< ESPHTTPD partition
ESP_PARTITION_SUBTYPE_DATA_FAT = 0x81, //!< FAT partition

Wyświetl plik

@ -173,6 +173,49 @@ void spi_flash_munmap(spi_flash_mmap_handle_t handle);
*/
void spi_flash_mmap_dump();
/**
* @brief SPI flash critical section enter function.
*/
typedef void (*spi_flash_guard_start_func_t)(void);
/**
* @brief SPI flash critical section exit function.
*/
typedef void (*spi_flash_guard_end_func_t)(void);
/**
* Structure holding SPI flash access critical section management functions
*
* @note Structure and corresponding guard functions should not reside in flash.
* For example structure can be placed in DRAM and functions in IRAM sections.
*/
typedef struct {
spi_flash_guard_start_func_t start; /**< critical section start func */
spi_flash_guard_end_func_t end; /**< critical section end func */
} spi_flash_guard_funcs_t;
/**
* @brief Sets guard functions to access flash.
*
* @note Pointed structure and corresponding guard functions should not reside in flash.
* For example structure can be placed in DRAM and functions in IRAM sections.
*
* @param funcs pointer to structure holding flash access guard functions.
*/
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
/**
* @brief Default OS-aware flash access guard functions
*/
extern const spi_flash_guard_funcs_t g_flash_guard_default_ops;
/**
* @brief Non-OS flash access guard functions
*
* @note This version of flash guard functions is to be used when no OS is present or from panic handler.
* It does not use any OS primitives and IPC and implies that only calling CPU is active.
*/
extern const spi_flash_guard_funcs_t g_flash_guard_no_os_ops;
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
/**

Wyświetl plik

@ -35,7 +35,8 @@ INPUT = ../components/esp32/include/esp_wifi.h \
../components/esp32/include/esp_deep_sleep.h \
../components/sdmmc/include/sdmmc_cmd.h \
../components/fatfs/src/esp_vfs_fat.h \
../components/fatfs/src/diskio.h
../components/fatfs/src/diskio.h \
../components/esp32/include/esp_core_dump.h
## Get warnings for functions that have no documentation for their parameters or return value
##

81
docs/core_dump.rst 100644
Wyświetl plik

@ -0,0 +1,81 @@
ESP32 Core Dump
===============
Overview
--------
ESP-IDF provides support to generate core dumps on unrecoverable software errors. This useful technique allows post-mortem analysis of software state at the moment of failure.
Upon the crash system enters panic state, prints some information and halts or reboots depending configuration. User can choose to generate core dump in order to analyse
the reason of failure on PC later on. Core dump contains snapshots of all tasks in the system at the moment of failure. Snapshots include tasks control blocks (TCB) and stacks.
So it is possible to find out what task, at what instruction (line of code) and what callstack of that task lead to the crash.
ESP-IDF provides special script `espcoredump.py` to help users to retrieve and analyse core dumps. This tool provides two commands for core dumps analysis:
* info_corefile - prints crashed task's registers, callstack, list of available tasks in the system, memory regions and contents of memory stored in core dump (TCBs and stacks)
* dbg_corefile - creates core dump ELF file and runs GDB debug session with this file. User can examine memory, variables and tasks states manually. Note that since not all memory is saved in core dump only values of variables allocated on stack will be meaningfull
Configuration
-------------
Currently there are three options related to core dump generation which user can choose in configuration menu of the application (`make menuconfig`):
* Disable core dump generation
* Save core dump to flash
* Print core dump to UART
These options can be choosen in Components -> ESP32-specific config -> Core dump destination menu item.
Save core dump to flash
-----------------------
When this option is selected core dumps are saved to special partition on flash. When using default partition table files which are provided with ESP-IDF it automatically
allocates necessary space on flash, But if user wants to use its own layout file together with core dump feature it should define separate partition for core dump
as it is shown below::
# Name, Type, SubType, Offset, Size
# Note: if you change the phy_init or app partition offset, make sure to change the offset in Kconfig.projbuild
nvs, data, nvs, 0x9000, 0x6000
phy_init, data, phy, 0xf000, 0x1000
factory, app, factory, 0x10000, 1M
coredump, data, coredump,, 64K
There are no special requrements for partition name. It can be choosen according to the user application needs, but partition type should be 'data' and
sub-type should be 'coredump'. Also when choosing partition size note that core dump data structure introduces constant overhead of 20 bytes and per-task overhead of 12 bytes.
This overhead does not include size of TCB and stack for every task. So partirion size should be at least 20 + max tasks number x (12 + TCB size + max task stack size) bytes.
The example of generic command to analyze core dump from flash is: `espcoredump.py -p </path/to/serial/port> info_corefile </path/to/program/elf/file>`
or `espcoredump.py -p </path/to/serial/port> dbg_corefile </path/to/program/elf/file>`
Print core dump to UART
-----------------------
When this option is selected base64-encoded core dumps are printed on UART upon system panic. In this case user should save core dump text body to some file manually and
then run the following command: `espcoredump.py -p </path/to/serial/port> info_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
or `espcoredump.py -p </path/to/serial/port> dbg_corefile -t b64 -c </path/to/saved/base64/text> </path/to/program/elf/file>`
Base64-encoded body of core dump will be between the following header and footer::
================= CORE DUMP START =================
<body of base64-encoded core dump, save it to file on disk>
================= CORE DUMP END ===================
Running 'espcoredump.py'
------------------------------------
Generic command syntax:
`espcoredump.py [options] command [args]`
:Script Options:
* --chip,-c {auto,esp32}. Target chip type. Supported values are `auto` and `esp32`.
* --port,-p PORT. Serial port device.
* --baud,-b BAUD. Serial port baud rate used when flashing/reading.
:Commands:
* info_corefile. Retrieve core dump and print useful info.
* dbg_corefile. Retrieve core dump and start GDB session with it.
:Command Arguments:
* --gdb,-g GDB. Path to gdb to use for data retrieval.
* --core,-c CORE. Path to core dump file to use (if skipped core dump will be read from flash).
* --core-format,-t CORE_FORMAT. Specifies that file passed with "-c" is an ELF ("elf"), dumped raw binary ("raw") or base64-encoded ("b64") format.
* --off,-o OFF. Ofsset of coredump partition in flash (type "make partition_table" to see it).
* --save-core,-s SAVE_CORE. Save core to file. Othwerwise temporary core file will be deleted. Ignored with "-c".
* --print-mem,-m Print memory dump. Used only with "info_corefile".

Wyświetl plik

@ -35,6 +35,7 @@ Contents:
partition-tables
build_system
openocd
core_dump
Flash encryption <security/flash-encryption>
Secure Boot <security/secure-boot>
ULP coprocessor <api/ulp.rst>