dynamic control block per heap

pull/11369/head
Philippe 2021-11-04 15:07:49 -07:00 zatwierdzone przez Guillaume Souchere
rodzic 1d9f539f22
commit 8325aff3c9
5 zmienionych plików z 124 dodań i 134 usunięć

Wyświetl plik

@ -90,12 +90,6 @@ tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32); tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64); tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
/* Ensure we've properly tuned our sizes. */
tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
static inline __attribute__((__always_inline__)) size_t align_up(size_t x, size_t align) static inline __attribute__((__always_inline__)) size_t align_up(size_t x, size_t align)
{ {
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
@ -120,7 +114,7 @@ static inline __attribute__((__always_inline__)) void* align_ptr(const void* ptr
** Adjust an allocation size to be aligned to word size, and no smaller ** Adjust an allocation size to be aligned to word size, and no smaller
** than internal minimum. ** than internal minimum.
*/ */
static inline __attribute__((__always_inline__)) size_t adjust_request_size(size_t size, size_t align) static inline __attribute__((__always_inline__)) size_t adjust_request_size(tlsf_t tlsf, size_t size, size_t align)
{ {
size_t adjust = 0; size_t adjust = 0;
if (size) if (size)
@ -128,7 +122,7 @@ static inline __attribute__((__always_inline__)) size_t adjust_request_size(size
const size_t aligned = align_up(size, align); const size_t aligned = align_up(size, align);
/* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */ /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
if (aligned < block_size_max) if (aligned < tlsf_block_size_max(tlsf))
{ {
adjust = tlsf_max(aligned, block_size_min); adjust = tlsf_max(aligned, block_size_min);
} }
@ -141,10 +135,10 @@ static inline __attribute__((__always_inline__)) size_t adjust_request_size(size
** the documentation found in the white paper. ** the documentation found in the white paper.
*/ */
static inline __attribute__((__always_inline__)) void mapping_insert(size_t size, int* fli, int* sli) static inline __attribute__((__always_inline__)) void mapping_insert(control_t *control, size_t size, int* fli, int* sli)
{ {
int fl, sl; int fl, sl;
if (size < SMALL_BLOCK_SIZE) if (size < control->small_block_size)
{ {
/* Store small blocks in first list. */ /* Store small blocks in first list. */
fl = 0; fl = 0;
@ -153,22 +147,22 @@ static inline __attribute__((__always_inline__)) void mapping_insert(size_t size
else else
{ {
fl = tlsf_fls(size); fl = tlsf_fls(size);
sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2); sl = tlsf_cast(int, size >> (fl - control->sl_index_count_log2)) ^ (1 << control->sl_index_count_log2);
fl -= (FL_INDEX_SHIFT - 1); fl -= (control->fl_index_shift - 1);
} }
*fli = fl; *fli = fl;
*sli = sl; *sli = sl;
} }
/* This version rounds up to the next block size (for allocations) */ /* This version rounds up to the next block size (for allocations) */
static inline __attribute__((__always_inline__)) void mapping_search(size_t size, int* fli, int* sli) static inline __attribute__((__always_inline__)) void mapping_search(control_t *control, size_t size, int* fli, int* sli)
{ {
if (size >= SMALL_BLOCK_SIZE) if (size >= control->small_block_size)
{ {
const size_t round = (1 << (tlsf_fls(size) - SL_INDEX_COUNT_LOG2)) - 1; const size_t round = (1 << (tlsf_fls(size) - control->sl_index_count_log2)) - 1;
size += round; size += round;
} }
mapping_insert(size, fli, sli); mapping_insert(control, size, fli, sli);
} }
static inline __attribute__((__always_inline__)) block_header_t* search_suitable_block(control_t* control, int* fli, int* sli) static inline __attribute__((__always_inline__)) block_header_t* search_suitable_block(control_t* control, int* fli, int* sli)
@ -200,7 +194,7 @@ static inline __attribute__((__always_inline__)) block_header_t* search_suitable
*sli = sl; *sli = sl;
/* Return the first block in the free list. */ /* Return the first block in the free list. */
return control->blocks[fl][sl]; return control->blocks[fl*control->sl_index_count + sl];
} }
/* Remove a free block from the free list.*/ /* Remove a free block from the free list.*/
@ -214,9 +208,9 @@ static inline __attribute__((__always_inline__)) void remove_free_block(control_
prev->next_free = next; prev->next_free = next;
/* If this block is the head of the free list, set new head. */ /* If this block is the head of the free list, set new head. */
if (control->blocks[fl][sl] == block) if (control->blocks[fl*control->sl_index_count + sl] == block)
{ {
control->blocks[fl][sl] = next; control->blocks[fl*control->sl_index_count + sl] = next;
/* If the new head is null, clear the bitmap. */ /* If the new head is null, clear the bitmap. */
if (next == &control->block_null) if (next == &control->block_null)
@ -235,7 +229,7 @@ static inline __attribute__((__always_inline__)) void remove_free_block(control_
/* Insert a free block into the free block list. */ /* Insert a free block into the free block list. */
static inline __attribute__((__always_inline__)) void insert_free_block(control_t* control, block_header_t* block, int fl, int sl) static inline __attribute__((__always_inline__)) void insert_free_block(control_t* control, block_header_t* block, int fl, int sl)
{ {
block_header_t* current = control->blocks[fl][sl]; block_header_t* current = control->blocks[fl*control->sl_index_count + sl];
tlsf_assert(current && "free list cannot have a null entry"); tlsf_assert(current && "free list cannot have a null entry");
tlsf_assert(block && "cannot insert a null entry into the free list"); tlsf_assert(block && "cannot insert a null entry into the free list");
block->next_free = current; block->next_free = current;
@ -248,7 +242,7 @@ static inline __attribute__((__always_inline__)) void insert_free_block(control_
** Insert the new block at the head of the list, and mark the first- ** Insert the new block at the head of the list, and mark the first-
** and second-level bitmaps appropriately. ** and second-level bitmaps appropriately.
*/ */
control->blocks[fl][sl] = block; control->blocks[fl*control->sl_index_count + sl] = block;
control->fl_bitmap |= (1 << fl); control->fl_bitmap |= (1 << fl);
control->sl_bitmap[fl] |= (1 << sl); control->sl_bitmap[fl] |= (1 << sl);
} }
@ -257,7 +251,7 @@ static inline __attribute__((__always_inline__)) void insert_free_block(control_
static inline __attribute__((__always_inline__)) void block_remove(control_t* control, block_header_t* block) static inline __attribute__((__always_inline__)) void block_remove(control_t* control, block_header_t* block)
{ {
int fl, sl; int fl, sl;
mapping_insert(block_size(block), &fl, &sl); mapping_insert(control, block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl); remove_free_block(control, block, fl, sl);
} }
@ -265,7 +259,7 @@ static inline __attribute__((__always_inline__)) void block_remove(control_t* co
static inline __attribute__((__always_inline__)) void block_insert(control_t* control, block_header_t* block) static inline __attribute__((__always_inline__)) void block_insert(control_t* control, block_header_t* block)
{ {
int fl, sl; int fl, sl;
mapping_insert(block_size(block), &fl, &sl); mapping_insert(control, block_size(block), &fl, &sl);
insert_free_block(control, block, fl, sl); insert_free_block(control, block, fl, sl);
} }
@ -428,7 +422,7 @@ static inline __attribute__((__always_inline__)) block_header_t* block_locate_f
if (size) if (size)
{ {
mapping_search(size, &fl, &sl); mapping_search(control, size, &fl, &sl);
/* /*
** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
@ -436,7 +430,7 @@ static inline __attribute__((__always_inline__)) block_header_t* block_locate_f
** So, we protect against that here, since this is the only callsite of mapping_search. ** So, we protect against that here, since this is the only callsite of mapping_search.
** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range. ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
*/ */
if (fl < FL_INDEX_COUNT) if (fl < control->fl_index_count)
{ {
block = search_suitable_block(control, &fl, &sl); block = search_suitable_block(control, &fl, &sl);
} }
@ -465,20 +459,44 @@ static inline __attribute__((__always_inline__)) void* block_prepare_used(contro
} }
/* Clear structure and point all empty lists at the null block. */ /* Clear structure and point all empty lists at the null block. */
static void control_construct(control_t* control) static void control_construct(control_t* control, size_t bytes)
{ {
int i, j; int i, j;
control->block_null.next_free = &control->block_null; control->block_null.next_free = &control->block_null;
control->block_null.prev_free = &control->block_null; control->block_null.prev_free = &control->block_null;
/* find the closest ^2 for first layer */
i = (bytes - 1) / (16 * 1024);
control->fl_index_max = FL_INDEX_MAX_MIN + sizeof(i) * 8 - __builtin_clz(i);
/* adapt second layer to the pool */
if (bytes <= 16 * 1024) control->sl_index_count_log2 = 3;
else if (bytes <= 256 * 1024) control->sl_index_count_log2 = 4;
else control->sl_index_count_log2 = 5;
control->fl_index_shift = (control->sl_index_count_log2 + ALIGN_SIZE_LOG2);
control->sl_index_count = 1 << control->sl_index_count_log2;
control->fl_index_count = control->fl_index_max - control->fl_index_shift + 1;
control->small_block_size = 1 << control->fl_index_shift;
control->fl_bitmap = 0; control->fl_bitmap = 0;
for (i = 0; i < FL_INDEX_COUNT; ++i)
control->sl_bitmap = align_ptr(control + 1, sizeof(*control->sl_bitmap));
control->blocks = align_ptr(control->sl_bitmap + control->fl_index_count, sizeof(*control->blocks));
control->size = (void*) (control->blocks + control->sl_index_count * control->fl_index_count) - (void*) control;
/* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
tlsf_assert(sizeof(unsigned int) * CHAR_BIT >= control->sl_index_count && "CHAR_BIT less than sl_index_count");
/* Ensure we've properly tuned our sizes. */
tlsf_assert(ALIGN_SIZE == control->small_block_size / control->sl_index_count && "ALIGN_SIZE does not match");
for (i = 0; i < control->fl_index_count; ++i)
{ {
control->sl_bitmap[i] = 0; control->sl_bitmap[i] = 0;
for (j = 0; j < SL_INDEX_COUNT; ++j) for (j = 0; j < control->sl_index_count; ++j)
{ {
control->blocks[i][j] = &control->block_null; control->blocks[i*control->sl_index_count + j] = &control->block_null;
} }
} }
} }
@ -524,14 +542,14 @@ int tlsf_check(tlsf_t tlsf)
int status = 0; int status = 0;
/* Check that the free lists and bitmaps are accurate. */ /* Check that the free lists and bitmaps are accurate. */
for (i = 0; i < FL_INDEX_COUNT; ++i) for (i = 0; i < control->fl_index_count; ++i)
{ {
for (j = 0; j < SL_INDEX_COUNT; ++j) for (j = 0; j < control->sl_index_count; ++j)
{ {
const int fl_map = control->fl_bitmap & (1 << i); const int fl_map = control->fl_bitmap & (1 << i);
const int sl_list = control->sl_bitmap[i]; const int sl_list = control->sl_bitmap[i];
const int sl_map = sl_list & (1 << j); const int sl_map = sl_list & (1 << j);
const block_header_t* block = control->blocks[i][j]; const block_header_t* block = control->blocks[i*control->sl_index_count + j];
/* Check that first- and second-level lists agree. */ /* Check that first- and second-level lists agree. */
if (!fl_map) if (!fl_map)
@ -559,7 +577,7 @@ int tlsf_check(tlsf_t tlsf)
tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free"); tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
tlsf_insist(block_size(block) >= block_size_min && "block not minimum size"); tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
mapping_insert(block_size(block), &fli, &sli); mapping_insert(control, block_size(block), &fli, &sli);
tlsf_insist(fli == i && sli == j && "block size indexed in wrong list"); tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
#ifdef MULTI_HEAP_POISONING #ifdef MULTI_HEAP_POISONING
@ -631,13 +649,37 @@ int tlsf_check_pool(pool_t pool)
return integ.status; return integ.status;
} }
size_t tlsf_fit_size(tlsf_t tlsf, size_t size)
{
/* because it's GoodFit, allocable size is one range lower */
if (size)
{
size_t sl_interval;
control_t* control = tlsf_cast(control_t*, tlsf);
sl_interval = (1 << ((sizeof(size_t) * 8 - 1) - __builtin_clz(size))) / control->sl_index_count;
return size & ~(sl_interval - 1);
}
return 0;
}
/* /*
** Size of the TLSF structures in a given memory block passed to ** Size of the TLSF structures in a given memory block passed to
** tlsf_create, equal to the size of a control_t ** tlsf_create, equal to the size of a control_t
*/ */
size_t tlsf_size(void) size_t tlsf_size(tlsf_t tlsf)
{ {
return sizeof(control_t); if (tlsf)
{
control_t* control = tlsf_cast(control_t*, tlsf);
return control->size;
}
/* no tlsf, we'll just return a min size */
return sizeof(control_t) +
sizeof(int) * SL_INDEX_COUNT_MIN +
sizeof(block_header_t*) * SL_INDEX_COUNT_MIN * FL_INDEX_COUNT_MIN;
} }
size_t tlsf_align_size(void) size_t tlsf_align_size(void)
@ -650,9 +692,10 @@ size_t tlsf_block_size_min(void)
return block_size_min; return block_size_min;
} }
size_t tlsf_block_size_max(void) size_t tlsf_block_size_max(tlsf_t tlsf)
{ {
return block_size_max; control_t* control = tlsf_cast(control_t*, tlsf);
return tlsf_cast(size_t, 1) << control->fl_index_max;
} }
/* /*
@ -685,16 +728,16 @@ pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes)
return 0; return 0;
} }
if (pool_bytes < block_size_min || pool_bytes > block_size_max) if (pool_bytes < block_size_min || pool_bytes > tlsf_block_size_max(tlsf))
{ {
#if defined (TLSF_64BIT) #if defined (TLSF_64BIT)
printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n", printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
(unsigned int)(pool_overhead + block_size_min), (unsigned int)(pool_overhead + block_size_min),
(unsigned int)((pool_overhead + block_size_max) / 256)); (unsigned int)((pool_overhead + tlsf_block_size_max(tlsf)) / 256));
#else #else
printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n", printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
(unsigned int)(pool_overhead + block_size_min), (unsigned int)(pool_overhead + block_size_min),
(unsigned int)(pool_overhead + block_size_max)); (unsigned int)(pool_overhead + tlsf_block_size_max(tlsf)));
#endif #endif
return 0; return 0;
} }
@ -730,7 +773,7 @@ void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free"); tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero"); tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
mapping_insert(block_size(block), &fl, &sl); mapping_insert(control, block_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl); remove_free_block(control, block, fl, sl);
} }
@ -739,7 +782,7 @@ void tlsf_remove_pool(tlsf_t tlsf, pool_t pool)
*/ */
tlsf_t tlsf_create(void* mem) tlsf_t tlsf_create(void* mem, size_t bytes)
{ {
#if _DEBUG #if _DEBUG
if (test_ffs_fls()) if (test_ffs_fls())
@ -755,27 +798,27 @@ tlsf_t tlsf_create(void* mem)
return 0; return 0;
} }
control_construct(tlsf_cast(control_t*, mem)); control_construct(tlsf_cast(control_t*, mem), bytes);
return tlsf_cast(tlsf_t, mem); return tlsf_cast(tlsf_t, mem);
} }
pool_t tlsf_get_pool(tlsf_t tlsf) pool_t tlsf_get_pool(tlsf_t tlsf)
{ {
return tlsf_cast(pool_t, (char*)tlsf + tlsf_size()); return tlsf_cast(pool_t, (char*)tlsf + tlsf_size(tlsf));
} }
tlsf_t tlsf_create_with_pool(void* mem, size_t bytes) tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes)
{ {
tlsf_t tlsf = tlsf_create(mem); tlsf_t tlsf = tlsf_create(mem, max_bytes ? max_bytes : pool_bytes);
tlsf_add_pool(tlsf, (char*)mem + tlsf_size(), bytes - tlsf_size()); tlsf_add_pool(tlsf, (char*)mem + tlsf_size(tlsf), pool_bytes - tlsf_size(tlsf));
return tlsf; return tlsf;
} }
void* tlsf_malloc(tlsf_t tlsf, size_t size) void* tlsf_malloc(tlsf_t tlsf, size_t size)
{ {
control_t* control = tlsf_cast(control_t*, tlsf); control_t* control = tlsf_cast(control_t*, tlsf);
size_t adjust = adjust_request_size(size, ALIGN_SIZE); size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
block_header_t* block = block_locate_free(control, adjust); block_header_t* block = block_locate_free(control, adjust);
return block_prepare_used(control, block, adjust); return block_prepare_used(control, block, adjust);
} }
@ -806,7 +849,7 @@ void* tlsf_malloc(tlsf_t tlsf, size_t size)
void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset) void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset)
{ {
control_t* control = tlsf_cast(control_t*, tlsf); control_t* control = tlsf_cast(control_t*, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE); const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
const size_t off_adjust = align_up(data_offset, ALIGN_SIZE); const size_t off_adjust = align_up(data_offset, ALIGN_SIZE);
/* /*
@ -821,7 +864,7 @@ void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_off
/* The offset is included in both `adjust` and `gap_minimum`, so we /* The offset is included in both `adjust` and `gap_minimum`, so we
** need to subtract it once. ** need to subtract it once.
*/ */
const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum - off_adjust, align); const size_t size_with_gap = adjust_request_size(tlsf, adjust + align + gap_minimum - off_adjust, align);
/* /*
** If alignment is less than or equal to base alignment, we're done, because ** If alignment is less than or equal to base alignment, we're done, because
@ -934,7 +977,7 @@ void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size)
const size_t cursize = block_size(block); const size_t cursize = block_size(block);
const size_t combined = cursize + block_size(next) + block_header_overhead; const size_t combined = cursize + block_size(next) + block_header_overhead;
const size_t adjust = adjust_request_size(size, ALIGN_SIZE); const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE);
tlsf_assert(!block_is_free(block) && "block already marked as free"); tlsf_assert(!block_is_free(block) && "block already marked as free");

Wyświetl plik

@ -78,12 +78,21 @@ typedef struct control_t
/* Empty lists point at this block to indicate they are free. */ /* Empty lists point at this block to indicate they are free. */
block_header_t block_null; block_header_t block_null;
/* Local parameter for the pool */
unsigned int fl_index_count;
unsigned int fl_index_shift;
unsigned int fl_index_max;
unsigned int sl_index_count;
unsigned int sl_index_count_log2;
unsigned int small_block_size;
size_t size;
/* Bitmaps for free lists. */ /* Bitmaps for free lists. */
unsigned int fl_bitmap; unsigned int fl_bitmap;
unsigned int sl_bitmap[FL_INDEX_COUNT]; unsigned int *sl_bitmap;
/* Head of free lists. */ /* Head of free lists. */
block_header_t* blocks[FL_INDEX_COUNT][SL_INDEX_COUNT]; block_header_t** blocks;
} control_t; } control_t;
#include "heap_tlsf_block_functions.h" #include "heap_tlsf_block_functions.h"
@ -94,8 +103,8 @@ typedef void* tlsf_t;
typedef void* pool_t; typedef void* pool_t;
/* Create/destroy a memory pool. */ /* Create/destroy a memory pool. */
tlsf_t tlsf_create(void* mem); tlsf_t tlsf_create(void* mem, size_t bytes);
tlsf_t tlsf_create_with_pool(void* mem, size_t bytes); tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes);
pool_t tlsf_get_pool(tlsf_t tlsf); pool_t tlsf_get_pool(tlsf_t tlsf);
/* Add/remove memory pools. */ /* Add/remove memory pools. */
@ -113,12 +122,13 @@ void tlsf_free(tlsf_t tlsf, void* ptr);
size_t tlsf_block_size(void* ptr); size_t tlsf_block_size(void* ptr);
/* Overheads/limits of internal structures. */ /* Overheads/limits of internal structures. */
size_t tlsf_size(void); size_t tlsf_size(tlsf_t tlsf);
size_t tlsf_align_size(void); size_t tlsf_align_size(void);
size_t tlsf_block_size_min(void); size_t tlsf_block_size_min(void);
size_t tlsf_block_size_max(void); size_t tlsf_block_size_max(tlsf_t tlsf);
size_t tlsf_pool_overhead(void); size_t tlsf_pool_overhead(void);
size_t tlsf_alloc_overhead(void); size_t tlsf_alloc_overhead(void);
size_t tlsf_fit_size(tlsf_t tlsf, size_t size);
/* Debugging. */ /* Debugging. */
typedef void (*tlsf_walker)(void* ptr, size_t size, int used, void* user); typedef void (*tlsf_walker)(void* ptr, size_t size, int used, void* user);

Wyświetl plik

@ -63,9 +63,11 @@
** A free block must be large enough to store its header minus the size of ** A free block must be large enough to store its header minus the size of
** the prev_phys_block field, and no larger than the number of addressable ** the prev_phys_block field, and no larger than the number of addressable
** bits for FL_INDEX. ** bits for FL_INDEX.
** The block_size_max macro returns the maximum block for the minimum pool
** use tlsf_block_size_max for a value specific to the pool
*/ */
#define block_size_min (sizeof(block_header_t) - sizeof(block_header_t*)) #define block_size_min (sizeof(block_header_t) - sizeof(block_header_t*))
#define block_size_max (tlsf_cast(size_t, 1) << FL_INDEX_MAX) #define block_size_max (tlsf_cast(size_t, 1) << FL_INDEX_MAX_MIN)
/* /*
** block_header_t member functions. ** block_header_t member functions.

Wyświetl plik

@ -37,23 +37,13 @@
#pragma once #pragma once
#ifdef ESP_PLATFORM
#include "soc/soc.h"
#if !CONFIG_SPIRAM
#define TLSF_MAX_POOL_SIZE (SOC_DIRAM_DRAM_HIGH - SOC_DIRAM_DRAM_LOW)
#else
#define TLSF_MAX_POOL_SIZE SOC_EXTRAM_DATA_SIZE
#endif
enum tlsf_config enum tlsf_config
{ {
/* log2 of number of linear subdivisions of block sizes. Larger /* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of ** values require more memory in the control structure. Values of
** 4 or 5 are typical. ** 4 or 5 are typical, 3 is for very small pools.
*/ */
SL_INDEX_COUNT_LOG2 = 5, SL_INDEX_COUNT_LOG2_MIN = 3,
/* All allocation sizes and addresses are aligned to 4 bytes. */ /* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2, ALIGN_SIZE_LOG2 = 2,
@ -68,59 +58,9 @@ enum tlsf_config
** trying to split size ranges into more slots than we have available. ** trying to split size ranges into more slots than we have available.
** Instead, we calculate the minimum threshold size, and place all ** Instead, we calculate the minimum threshold size, and place all
** blocks below that size into the 0th first-level list. ** blocks below that size into the 0th first-level list.
** Values below are the absolute minimum to accept a pool addition
*/ */
FL_INDEX_MAX_MIN = 14, // For a less than 16kB pool
/* Tunning the first level, we can reduce TLSF pool overhead SL_INDEX_COUNT_MIN = (1 << SL_INDEX_COUNT_LOG2_MIN),
* in exchange of manage a pool smaller than 4GB FL_INDEX_COUNT_MIN = (FL_INDEX_MAX_MIN - (SL_INDEX_COUNT_LOG2_MIN + ALIGN_SIZE_LOG2) + 1),
*/
#if (TLSF_MAX_POOL_SIZE <= (256 * 1024))
FL_INDEX_MAX = 18, //Each pool can have up 256KB
#elif (TLSF_MAX_POOL_SIZE <= (512 * 1024))
FL_INDEX_MAX = 19, //Each pool can have up 512KB
#elif (TLSF_MAX_POOL_SIZE <= (1 * 1024 * 1024))
FL_INDEX_MAX = 20, //Each pool can have up 1MB
#elif (TLSF_MAX_POOL_SIZE <= (2 * 1024 * 1024))
FL_INDEX_MAX = 21, //Each pool can have up 2MB
#elif (TLSF_MAX_POOL_SIZE <= (4 * 1024 * 1024))
FL_INDEX_MAX = 22, //Each pool can have up 4MB
#elif (TLSF_MAX_POOL_SIZE <= (8 * 1024 * 1024))
FL_INDEX_MAX = 23, //Each pool can have up 8MB
#elif (TLSF_MAX_POOL_SIZE <= (16 * 1024 * 1024))
FL_INDEX_MAX = 24, //Each pool can have up 16MB
#else
#error "Higher TLSF pool sizes should be added for this new config"
#endif
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
}; };
#else
enum tlsf_config
{
//Specific configuration for host test.
/* log2 of number of linear subdivisions of block sizes. Larger
** values require more memory in the control structure. Values of
** 4 or 5 are typical.
*/
SL_INDEX_COUNT_LOG2 = 5,
/* All allocation sizes and addresses are aligned to 4 bytes. */
ALIGN_SIZE_LOG2 = 2,
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
/* Tunning the first level, we can reduce TLSF pool overhead
* in exchange of manage a pool smaller than 4GB
*/
FL_INDEX_MAX = 30,
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};
#endif

Wyświetl plik

@ -122,7 +122,7 @@ size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p)
multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size) multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
{ {
assert(start_ptr); assert(start_ptr);
if(size < (tlsf_size() + tlsf_block_size_min() + sizeof(heap_t))) { if(size < (tlsf_size(NULL) + tlsf_block_size_min() + sizeof(heap_t))) {
//Region too small to be a heap. //Region too small to be a heap.
return NULL; return NULL;
} }
@ -130,13 +130,13 @@ multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size)
heap_t *result = (heap_t *)start_ptr; heap_t *result = (heap_t *)start_ptr;
size -= sizeof(heap_t); size -= sizeof(heap_t);
result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size); result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size, 0);
if(!result->heap_data) { if(!result->heap_data) {
return NULL; return NULL;
} }
result->lock = NULL; result->lock = NULL;
result->free_bytes = size - tlsf_size(); result->free_bytes = size - tlsf_size(result->heap_data);
result->pool_size = size; result->pool_size = size;
result->minimum_free_bytes = result->free_bytes; result->minimum_free_bytes = result->free_bytes;
return result; return result;
@ -399,9 +399,7 @@ static void multi_heap_get_info_tlsf(void* ptr, size_t size, int used, void* use
void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info) void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
{ {
uint32_t sl_interval;
uint32_t overhead; uint32_t overhead;
memset(info, 0, sizeof(multi_heap_info_t)); memset(info, 0, sizeof(multi_heap_info_t));
if (heap == NULL) { if (heap == NULL) {
@ -413,12 +411,9 @@ void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info)
/* TLSF has an overhead per block. Calculate the total amount of overhead, it shall not be /* TLSF has an overhead per block. Calculate the total amount of overhead, it shall not be
* part of the allocated bytes */ * part of the allocated bytes */
overhead = info->allocated_blocks * tlsf_alloc_overhead(); overhead = info->allocated_blocks * tlsf_alloc_overhead();
info->total_allocated_bytes = (heap->pool_size - tlsf_size()) - heap->free_bytes - overhead; info->total_allocated_bytes = (heap->pool_size - tlsf_size(heap->heap_data)) - heap->free_bytes - overhead;
info->minimum_free_bytes = heap->minimum_free_bytes; info->minimum_free_bytes = heap->minimum_free_bytes;
info->total_free_bytes = heap->free_bytes; info->total_free_bytes = heap->free_bytes;
if (info->largest_free_block) { info->largest_free_block = tlsf_fit_size(heap->heap_data, info->largest_free_block);
sl_interval = (1 << (31 - __builtin_clz(info->largest_free_block))) / SL_INDEX_COUNT;
info->largest_free_block = info->largest_free_block & ~(sl_interval - 1);
}
multi_heap_internal_unlock(heap); multi_heap_internal_unlock(heap);
} }