kopia lustrzana https://github.com/espressif/esp-idf
pm: initial implementation for ESP32
rodzic
47e3c9dd4b
commit
68e1751b78
|
@ -0,0 +1,42 @@
|
|||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @brief Power management config for ESP32
|
||||
*
|
||||
* Pass a pointer to this structure as an argument to esp_pm_configure function.
|
||||
*/
|
||||
typedef struct {
|
||||
rtc_cpu_freq_t max_cpu_freq; /*!< Maximum CPU frequency to use */
|
||||
rtc_cpu_freq_t min_cpu_freq; /*!< Minimum CPU frequency to use when no frequency locks are taken */
|
||||
bool light_sleep_enable; /*!< Enter light sleep when no locks are taken */
|
||||
} esp_pm_config_esp32_t;
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,456 @@
|
|||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_pm.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crosscore_int.h"
|
||||
|
||||
#include "soc/rtc.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/xtensa_timer.h"
|
||||
#include "xtensa/core-macros.h"
|
||||
|
||||
#include "pm_impl.h"
|
||||
#include "pm_trace.h"
|
||||
#include "esp_timer_impl.h"
|
||||
#include "esp32/pm.h"
|
||||
|
||||
/* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
|
||||
* for the purpose of detecting a deadlock.
|
||||
*/
|
||||
#define CCOMPARE_UPDATE_TIMEOUT 1000000
|
||||
|
||||
#ifdef CONFIG_PM_PROFILING
|
||||
#define WITH_PROFILING
|
||||
#endif
|
||||
|
||||
|
||||
static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
|
||||
/* The following state variables are protected using s_switch_lock: */
|
||||
/* Current sleep mode; When switching, contains old mode until switch is complete */
|
||||
static pm_mode_t s_mode = PM_MODE_CPU_MAX;
|
||||
/* True when switch is in progress */
|
||||
static volatile bool s_is_switching;
|
||||
/* When switch is in progress, this is the mode we are switching into */
|
||||
static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
|
||||
/* Number of times each mode was locked */
|
||||
static size_t s_mode_lock_counts[PM_MODE_COUNT];
|
||||
/* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
|
||||
static uint32_t s_mode_mask;
|
||||
|
||||
/* Divider and multiplier used to adjust (ccompare - ccount) duration.
|
||||
* Only set to non-zero values when switch is in progress.
|
||||
*/
|
||||
static uint32_t s_ccount_div;
|
||||
static uint32_t s_ccount_mul;
|
||||
|
||||
/* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
|
||||
* Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
|
||||
*/
|
||||
static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
|
||||
|
||||
/* When no RTOS tasks are active, these locks are released to allow going into
|
||||
* a lower power mode. Used by ISR hook and idle hook.
|
||||
*/
|
||||
static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
|
||||
|
||||
/* A flag indicating that Idle hook has run on a given CPU;
|
||||
* Next interrupt on the same CPU will take s_rtos_lock_handle.
|
||||
*/
|
||||
static bool s_core_idle[portNUM_PROCESSORS];
|
||||
|
||||
/* g_ticks_us defined in ROM for PRO CPU */
|
||||
extern uint32_t g_ticks_per_us_pro;
|
||||
|
||||
/* Lookup table of CPU frequencies to be used in each mode.
|
||||
* Modified by esp_pm_configure.
|
||||
*/
|
||||
rtc_cpu_freq_t s_cpu_freq_by_mode[PM_MODE_COUNT] = {
|
||||
[PM_MODE_LIGHT_SLEEP] = (rtc_cpu_freq_t) -1, /* unused */
|
||||
[PM_MODE_APB_MIN] = RTC_CPU_FREQ_XTAL,
|
||||
[PM_MODE_APB_MAX] = RTC_CPU_FREQ_80M,
|
||||
[PM_MODE_CPU_MAX] = RTC_CPU_FREQ_80M,
|
||||
};
|
||||
|
||||
/* Lookup table of CPU ticks per microsecond for each RTC_CPU_FREQ_ value.
|
||||
* Essentially the same as returned by rtc_clk_cpu_freq_value(), but without
|
||||
* the function call. Not const because XTAL frequency is only known at run time.
|
||||
*/
|
||||
static uint32_t s_cpu_freq_to_ticks[] = {
|
||||
[RTC_CPU_FREQ_XTAL] = 0, /* This is set by esp_pm_impl_init */
|
||||
[RTC_CPU_FREQ_80M] = 80,
|
||||
[RTC_CPU_FREQ_160M] = 160,
|
||||
[RTC_CPU_FREQ_240M] = 240,
|
||||
[RTC_CPU_FREQ_2M] = 2
|
||||
};
|
||||
|
||||
/* Lookup table of names for each RTC_CPU_FREQ_ value. Used for logging only. */
|
||||
static const char* s_freq_names[] __attribute__((unused)) = {
|
||||
[RTC_CPU_FREQ_XTAL] = "XTAL",
|
||||
[RTC_CPU_FREQ_80M] = "80",
|
||||
[RTC_CPU_FREQ_160M] = "160",
|
||||
[RTC_CPU_FREQ_240M] = "240",
|
||||
[RTC_CPU_FREQ_2M] = "2"
|
||||
};
|
||||
|
||||
/* Whether automatic light sleep is enabled. Currently always false */
|
||||
static bool s_light_sleep_en = false;
|
||||
|
||||
#ifdef WITH_PROFILING
|
||||
/* Time, in microseconds, spent so far in each mode */
|
||||
static pm_time_t s_time_in_mode[PM_MODE_COUNT];
|
||||
/* Timestamp, in microseconds, when the mode switch last happened */
|
||||
static pm_time_t s_last_mode_change_time;
|
||||
/* User-readable mode names, used by esp_pm_impl_dump_stats */
|
||||
static const char* s_mode_names[] = {
|
||||
"SLEEP",
|
||||
"APB_MIN",
|
||||
"APB_MAX",
|
||||
"CPU_MAX"
|
||||
};
|
||||
#endif // WITH_PROFILING
|
||||
|
||||
|
||||
static const char* TAG = "pm_esp32";
|
||||
|
||||
static void update_ccompare();
|
||||
static void do_switch(pm_mode_t new_mode);
|
||||
static void leave_idle();
|
||||
static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
|
||||
|
||||
|
||||
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
|
||||
{
|
||||
(void) arg;
|
||||
if (type == ESP_PM_CPU_FREQ_MAX) {
|
||||
return PM_MODE_CPU_MAX;
|
||||
} else if (type == ESP_PM_APB_FREQ_MAX) {
|
||||
return PM_MODE_APB_MAX;
|
||||
} else if (type == ESP_PM_NO_LIGHT_SLEEP) {
|
||||
return PM_MODE_APB_MIN;
|
||||
} else {
|
||||
// unsupported mode
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t esp_pm_configure(const void* vconfig)
|
||||
{
|
||||
#ifndef CONFIG_PM_ENABLE
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
#endif
|
||||
|
||||
const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
|
||||
if (config->light_sleep_enable) {
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
rtc_cpu_freq_t min_freq = config->min_cpu_freq;
|
||||
rtc_cpu_freq_t max_freq = config->max_cpu_freq;
|
||||
|
||||
rtc_cpu_freq_t apb_max_freq; /* CPU frequency in APB_MAX mode */
|
||||
if (max_freq == RTC_CPU_FREQ_240M) {
|
||||
/* We can't switch between 240 and 80/160 without disabling PLL,
|
||||
* so use 240MHz CPU frequency when 80MHz APB frequency is requested.
|
||||
*/
|
||||
apb_max_freq = RTC_CPU_FREQ_240M;
|
||||
} else {
|
||||
/* Otherwise (max CPU frequency is 80MHz or 160MHz), can use 80MHz
|
||||
* CPU frequency when 80MHz APB frequency is requested.
|
||||
*/
|
||||
apb_max_freq = RTC_CPU_FREQ_80M;
|
||||
}
|
||||
|
||||
apb_max_freq = MAX(apb_max_freq, min_freq);
|
||||
|
||||
ESP_LOGI(TAG, "Frequency switching config: "
|
||||
"CPU_MAX: %s, APB_MAX: %s, APB_MIN: %s, Light sleep: %s",
|
||||
s_freq_names[max_freq],
|
||||
s_freq_names[apb_max_freq],
|
||||
s_freq_names[min_freq],
|
||||
config->light_sleep_enable ? "ENABLED" : "DISABLED");
|
||||
|
||||
portENTER_CRITICAL(&s_switch_lock);
|
||||
s_cpu_freq_by_mode[PM_MODE_CPU_MAX] = max_freq;
|
||||
s_cpu_freq_by_mode[PM_MODE_APB_MAX] = apb_max_freq;
|
||||
s_cpu_freq_by_mode[PM_MODE_APB_MIN] = min_freq;
|
||||
s_light_sleep_en = config->light_sleep_enable;
|
||||
portEXIT_CRITICAL(&s_switch_lock);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static pm_mode_t IRAM_ATTR get_lowest_allowed_mode()
|
||||
{
|
||||
/* TODO: optimize using ffs/clz */
|
||||
if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
|
||||
return PM_MODE_CPU_MAX;
|
||||
} else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
|
||||
return PM_MODE_APB_MAX;
|
||||
} else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
|
||||
return PM_MODE_APB_MIN;
|
||||
} else {
|
||||
return PM_MODE_LIGHT_SLEEP;
|
||||
}
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
|
||||
pm_mode_switch_t lock_or_unlock, pm_time_t now)
|
||||
{
|
||||
bool need_switch = false;
|
||||
uint32_t mode_mask = BIT(mode);
|
||||
portENTER_CRITICAL(&s_switch_lock);
|
||||
uint32_t count;
|
||||
if (lock_or_unlock == MODE_LOCK) {
|
||||
count = ++s_mode_lock_counts[mode];
|
||||
} else {
|
||||
count = s_mode_lock_counts[mode]--;
|
||||
}
|
||||
if (count == 1) {
|
||||
if (lock_or_unlock == MODE_LOCK) {
|
||||
s_mode_mask |= mode_mask;
|
||||
} else {
|
||||
s_mode_mask &= ~mode_mask;
|
||||
}
|
||||
need_switch = true;
|
||||
}
|
||||
|
||||
pm_mode_t new_mode = s_mode;
|
||||
if (need_switch) {
|
||||
new_mode = get_lowest_allowed_mode();
|
||||
#ifdef WITH_PROFILING
|
||||
if (s_last_mode_change_time != 0) {
|
||||
pm_time_t diff = now - s_last_mode_change_time;
|
||||
s_time_in_mode[s_mode] += diff;
|
||||
}
|
||||
s_last_mode_change_time = now;
|
||||
#endif // WITH_PROFILING
|
||||
}
|
||||
portEXIT_CRITICAL(&s_switch_lock);
|
||||
if (need_switch && new_mode != s_mode) {
|
||||
do_switch(new_mode);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
|
||||
* values on both CPUs.
|
||||
* @param old_ticks_per_us old CPU frequency
|
||||
* @param ticks_per_us new CPU frequency
|
||||
*/
|
||||
static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
|
||||
{
|
||||
uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
|
||||
uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
|
||||
/* Update APB frequency value used by the timer */
|
||||
if (old_apb_ticks_per_us != apb_ticks_per_us) {
|
||||
esp_timer_impl_update_apb_freq(apb_ticks_per_us);
|
||||
}
|
||||
|
||||
/* Calculate new tick divisor */
|
||||
_xt_tick_divisor = ticks_per_us * 1000000 / XT_TICK_PER_SEC;
|
||||
|
||||
int core_id = xPortGetCoreID();
|
||||
if (s_rtos_lock_handle[core_id] != NULL) {
|
||||
ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
|
||||
/* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
|
||||
* to calculate new CCOMPARE value.
|
||||
*/
|
||||
s_ccount_div = old_ticks_per_us;
|
||||
s_ccount_mul = ticks_per_us;
|
||||
|
||||
/* Update CCOMPARE value on this CPU */
|
||||
update_ccompare();
|
||||
|
||||
#if portNUM_PROCESSORS == 2
|
||||
/* Send interrupt to the other CPU to update CCOMPARE value */
|
||||
int other_core_id = (core_id == 0) ? 1 : 0;
|
||||
|
||||
s_need_update_ccompare[other_core_id] = true;
|
||||
esp_crosscore_int_send_freq_switch(other_core_id);
|
||||
|
||||
int timeout = 0;
|
||||
while (s_need_update_ccompare[other_core_id]) {
|
||||
if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
|
||||
assert(false && "failed to update CCOMPARE, possible deadlock");
|
||||
}
|
||||
}
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
|
||||
s_ccount_mul = 0;
|
||||
s_ccount_div = 0;
|
||||
ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform the switch to new power mode.
|
||||
* Currently only changes the CPU frequency and adjusts clock dividers.
|
||||
* No light sleep yet.
|
||||
* @param new_mode mode to switch to
|
||||
*/
|
||||
static void IRAM_ATTR do_switch(pm_mode_t new_mode)
|
||||
{
|
||||
const int core_id = xPortGetCoreID();
|
||||
|
||||
do {
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
if (!s_is_switching) {
|
||||
break;
|
||||
}
|
||||
if (s_new_mode <= new_mode) {
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
return;
|
||||
}
|
||||
if (s_need_update_ccompare[core_id]) {
|
||||
s_need_update_ccompare[core_id] = false;
|
||||
}
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
} while (true);
|
||||
s_new_mode = new_mode;
|
||||
s_is_switching = true;
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
|
||||
rtc_cpu_freq_t old_freq = s_cpu_freq_by_mode[s_mode];
|
||||
rtc_cpu_freq_t new_freq = s_cpu_freq_by_mode[new_mode];
|
||||
|
||||
if (new_freq != old_freq) {
|
||||
uint32_t old_ticks_per_us = g_ticks_per_us_pro;
|
||||
uint32_t new_ticks_per_us = s_cpu_freq_to_ticks[new_freq];
|
||||
|
||||
bool switch_down = new_ticks_per_us < old_ticks_per_us;
|
||||
|
||||
ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
|
||||
if (switch_down) {
|
||||
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
||||
}
|
||||
rtc_clk_cpu_freq_set_fast(new_freq);
|
||||
if (!switch_down) {
|
||||
on_freq_update(old_ticks_per_us, new_ticks_per_us);
|
||||
}
|
||||
ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
|
||||
}
|
||||
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
s_mode = new_mode;
|
||||
s_is_switching = false;
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
|
||||
*
|
||||
* Adjusts CCOMPARE value so that the interrupt happens at the same time as it
|
||||
* would happen without the frequency change.
|
||||
* Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
|
||||
*/
|
||||
static void IRAM_ATTR update_ccompare()
|
||||
{
|
||||
const uint32_t ccompare_min_cycles_in_future = 1000;
|
||||
uint32_t ccount = XTHAL_GET_CCOUNT();
|
||||
uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
|
||||
if ((ccompare - ccompare_min_cycles_in_future) - ccount < UINT32_MAX / 2) {
|
||||
uint32_t diff = ccompare - ccount;
|
||||
uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
|
||||
if (diff_scaled < _xt_tick_divisor) {
|
||||
uint32_t new_ccompare = ccount + diff_scaled;
|
||||
XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void IRAM_ATTR leave_idle()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
if (s_core_idle[core_id]) {
|
||||
// TODO: possible optimization: raise frequency here first
|
||||
esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
|
||||
s_core_idle[core_id] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void esp_pm_impl_idle_hook()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
uint32_t state = portENTER_CRITICAL_NESTED();
|
||||
if (!s_core_idle[core_id]) {
|
||||
esp_pm_lock_release(s_rtos_lock_handle[core_id]);
|
||||
s_core_idle[core_id] = true;
|
||||
}
|
||||
portEXIT_CRITICAL_NESTED(state);
|
||||
ESP_PM_TRACE_ENTER(IDLE, core_id);
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_pm_impl_isr_hook()
|
||||
{
|
||||
int core_id = xPortGetCoreID();
|
||||
ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
|
||||
#if portNUM_PROCESSORS == 2
|
||||
if (s_need_update_ccompare[core_id]) {
|
||||
update_ccompare();
|
||||
s_need_update_ccompare[core_id] = false;
|
||||
} else {
|
||||
leave_idle();
|
||||
}
|
||||
#else
|
||||
leave_idle();
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
|
||||
}
|
||||
|
||||
#ifdef WITH_PROFILING
|
||||
void esp_pm_impl_dump_stats(FILE* out)
|
||||
{
|
||||
pm_time_t time_in_mode[PM_MODE_COUNT];
|
||||
|
||||
portENTER_CRITICAL_ISR(&s_switch_lock);
|
||||
memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
|
||||
pm_time_t last_mode_change_time = s_last_mode_change_time;
|
||||
pm_mode_t cur_mode = s_mode;
|
||||
pm_time_t now = pm_get_time();
|
||||
portEXIT_CRITICAL_ISR(&s_switch_lock);
|
||||
|
||||
time_in_mode[cur_mode] += now - last_mode_change_time;
|
||||
|
||||
for (int i = 0; i < PM_MODE_COUNT; ++i) {
|
||||
fprintf(out, "%8s %12lld %2d%%\n",
|
||||
s_mode_names[i],
|
||||
time_in_mode[i],
|
||||
(int) (time_in_mode[i] * 100 / now));
|
||||
}
|
||||
}
|
||||
#endif // WITH_PROFILING
|
||||
|
||||
void esp_pm_impl_init()
|
||||
{
|
||||
s_cpu_freq_to_ticks[RTC_CPU_FREQ_XTAL] = rtc_clk_xtal_freq_get();
|
||||
#ifdef CONFIG_PM_TRACE
|
||||
esp_pm_trace_init();
|
||||
#endif
|
||||
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
|
||||
&s_rtos_lock_handle[0]));
|
||||
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
|
||||
#if portNUM_PROCESSORS == 2
|
||||
ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
|
||||
&s_rtos_lock_handle[1]));
|
||||
ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
|
||||
#endif // portNUM_PROCESSORS == 2
|
||||
}
|
|
@ -0,0 +1,117 @@
|
|||
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
/**
|
||||
* @file pm_impl.h
|
||||
*
|
||||
* This header file defines interface between PM lock functions (pm_locks.c)
|
||||
* and the chip-specific power management (DFS/light sleep) implementation.
|
||||
*/
|
||||
|
||||
#include "soc/rtc.h"
|
||||
#include "esp_pm.h"
|
||||
#include "esp_timer.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
|
||||
/**
|
||||
* This is an enum of possible power modes supported by the implementation
|
||||
*/
|
||||
typedef enum {
|
||||
PM_MODE_LIGHT_SLEEP,//!< Light sleep
|
||||
PM_MODE_APB_MIN, //!< Idle (no CPU frequency or APB frequency locks)
|
||||
PM_MODE_APB_MAX, //!< Maximum APB frequency mode
|
||||
PM_MODE_CPU_MAX, //!< Maximum CPU frequency mode
|
||||
PM_MODE_COUNT //!< Number of items
|
||||
} pm_mode_t;
|
||||
|
||||
/**
|
||||
* @brief Get the mode corresponding to a certain lock
|
||||
* @param type lock type
|
||||
* @param arg argument value for this lock (passed to esp_pm_lock_create)
|
||||
* @return lowest power consumption mode which meets the constraints of the lock
|
||||
*/
|
||||
pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg);
|
||||
|
||||
/**
|
||||
* If profiling is enabled, this data type will be used to store microsecond
|
||||
* timestamps.
|
||||
*/
|
||||
typedef int64_t pm_time_t;
|
||||
|
||||
/**
|
||||
* See \ref esp_pm_impl_switch_mode
|
||||
*/
|
||||
typedef enum {
|
||||
MODE_LOCK,
|
||||
MODE_UNLOCK
|
||||
} pm_mode_switch_t;
|
||||
|
||||
/**
|
||||
* @brief Switch between power modes when lock is taken or released
|
||||
* @param mode pm_mode_t corresponding to the lock being taken or released,
|
||||
* as returned by \ref esp_pm_impl_get_mode
|
||||
* @param lock_or_unlock
|
||||
* - MODE_LOCK: lock was taken. Implementation needs to make sure
|
||||
* that the constraints of the lock are met by switching to the
|
||||
* given 'mode' or any of the higher power ones.
|
||||
* - MODE_UNLOCK: lock was released. If all the locks for given
|
||||
* mode are released, and no locks for higher power modes are
|
||||
* taken, implementation can switch to one of lower power modes.
|
||||
* @param now timestamp when the lock was taken or released. Passed as
|
||||
* a minor optimization, so that the implementation does not need to
|
||||
* call pm_get_time again.
|
||||
*/
|
||||
void esp_pm_impl_switch_mode(pm_mode_t mode, pm_mode_switch_t lock_or_unlock, pm_time_t now);
|
||||
|
||||
/**
|
||||
* @brief Call once at startup to initialize pm implementation
|
||||
*/
|
||||
void esp_pm_impl_init();
|
||||
|
||||
/**
|
||||
* @brief Hook function for the idle task
|
||||
* Must be called from the IDLE task on each CPU before entering waiti state.
|
||||
*/
|
||||
void esp_pm_impl_idle_hook();
|
||||
|
||||
/**
|
||||
* @brief Hook function for the interrupt dispatcher
|
||||
* Must be called soon after entering the ISR
|
||||
*/
|
||||
void esp_pm_impl_isr_hook();
|
||||
|
||||
/**
|
||||
* @brief Dump the information about time spent in each of the pm modes.
|
||||
*
|
||||
* Prints three columns:
|
||||
* mode name, total time in mode (in microseconds), percentage of time in mode
|
||||
*
|
||||
* @param out stream to dump the information to
|
||||
*/
|
||||
void esp_pm_impl_dump_stats(FILE* out);
|
||||
|
||||
|
||||
#ifdef CONFIG_PM_PROFILING
|
||||
#define WITH_PROFILING
|
||||
#endif
|
||||
|
||||
#ifdef WITH_PROFILING
|
||||
static inline pm_time_t IRAM_ATTR pm_get_time()
|
||||
{
|
||||
return esp_timer_get_time();
|
||||
}
|
||||
#endif // WITH_PROFILING
|
Ładowanie…
Reference in New Issue