bootloader_support: added esp32-c3 support

pull/6275/head
morris 2020-12-01 21:34:53 +08:00
rodzic 8330b2541a
commit 3f287800eb
13 zmienionych plików z 952 dodań i 9 usunięć

Wyświetl plik

@ -25,10 +25,13 @@ endif
COMPONENT_OBJEXCLUDE += src/bootloader_flash_config_esp32s2.o \
src/bootloader_flash_config_esp32s3.o \
src/bootloader_flash_config_esp32c3.o \
src/bootloader_efuse_esp32s2.o \
src/bootloader_efuse_esp32s3.o \
src/bootloader_efuse_esp32c3.o \
src/bootloader_random_esp32s2.o \
src/bootloader_random_esp32s3.o
src/bootloader_random_esp32s3.o \
src/bootloader_random_esp32c3.o
ifndef CONFIG_SECURE_SIGNED_APPS_ECDSA_SCHEME
ifndef CONFIG_SECURE_SIGNED_APPS_RSA_SCHEME

Wyświetl plik

@ -42,7 +42,7 @@ void bootloader_console_init(void)
{
const int uart_num = CONFIG_ESP_CONSOLE_UART_NUM;
esp_rom_install_channel_putc(1, esp_rom_uart_putc);
esp_rom_install_uart_printf();
// Wait for UART FIFO to be empty.
esp_rom_uart_tx_wait_idle(0);
@ -52,7 +52,9 @@ void bootloader_console_init(void)
const int uart_tx_gpio = CONFIG_ESP_CONSOLE_UART_TX_GPIO;
const int uart_rx_gpio = CONFIG_ESP_CONSOLE_UART_RX_GPIO;
// Switch to the new UART (this just changes UART number used for esp_rom_printf in ROM code).
#if ESP_ROM_SUPPORT_MULTIPLE_UART
esp_rom_uart_set_as_console(uart_num);
#endif
// If console is attached to UART1 or if non-default pins are used,
// need to reconfigure pins using GPIO matrix
if (uart_num != 0 ||
@ -75,7 +77,7 @@ void bootloader_console_init(void)
// Set configured UART console baud rate
uint32_t clock_hz = rtc_clk_apb_freq_get();
#if CONFIG_IDF_TARGET_ESP32S3
#if ESP_ROM_UART_CLK_IS_XTAL
clock_hz = UART_CLK_FREQ_ROM; // From esp32-s3 on, UART clock source is selected to XTAL in ROM
#endif
esp_rom_uart_set_clock_baudrate(uart_num, clock_hz, CONFIG_ESP_CONSOLE_UART_BAUDRATE);

Wyświetl plik

@ -0,0 +1,28 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
uint8_t bootloader_common_get_chip_revision(void)
{
// should return the same value as esp_efuse_get_chip_ver()
/* No other revisions for ESP32-C3 */
return 0;
}
uint32_t bootloader_common_get_chip_ver_pkg(void)
{
// should return the same value as esp_efuse_get_pkg_ver()
return 0;
}

Wyświetl plik

@ -404,12 +404,7 @@ esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool
}
if (write_encrypted) {
#if CONFIG_IDF_TARGET_ESP32
return spi_to_esp_err(esp_rom_spiflash_write_encrypted(dest_addr, src, size));
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
// TODO: use the same ROM API here
return spi_to_esp_err(SPI_Encrypt_Write(dest_addr, src, size));
#endif
} else {
return spi_to_esp_err(esp_rom_spiflash_write(dest_addr, src, size));
}
@ -447,7 +442,9 @@ esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size)
#endif
#ifndef g_rom_spiflash_dummy_len_plus // ESP32-C3 uses a macro to access ROM data here
extern uint8_t g_rom_spiflash_dummy_len_plus[];
#endif
uint32_t bootloader_execute_flash_command(uint8_t command, uint32_t mosi_data, uint8_t mosi_len, uint8_t miso_len)
{
uint32_t old_ctrl_reg = SPIFLASH.ctrl.val;

Wyświetl plik

@ -0,0 +1,83 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <assert.h>
#include "string.h"
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp32c3/rom/gpio.h"
#include "esp32c3/rom/spi_flash.h"
#include "esp32c3/rom/efuse.h"
#include "soc/gpio_periph.h"
#include "soc/efuse_reg.h"
#include "soc/spi_reg.h"
#include "soc/spi_mem_reg.h"
#include "soc/spi_caps.h"
#include "flash_qio_mode.h"
#include "bootloader_flash_config.h"
#include "bootloader_common.h"
#define FLASH_IO_MATRIX_DUMMY_40M 0
#define FLASH_IO_MATRIX_DUMMY_80M 0
void bootloader_flash_update_id()
{
esp_rom_spiflash_chip_t *chip = &rom_spiflash_legacy_data->chip;
chip->device_id = bootloader_read_flash_id();
}
void IRAM_ATTR bootloader_flash_cs_timing_config()
{
SET_PERI_REG_MASK(SPI_MEM_USER_REG(0), SPI_MEM_CS_HOLD_M | SPI_MEM_CS_SETUP_M);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_HOLD_TIME_V, 0, SPI_MEM_CS_HOLD_TIME_S);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_SETUP_TIME_V, 0, SPI_MEM_CS_SETUP_TIME_S);
SET_PERI_REG_MASK(SPI_MEM_USER_REG(1), SPI_MEM_CS_HOLD_M | SPI_MEM_CS_SETUP_M);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(1), SPI_MEM_CS_HOLD_TIME_V, 1, SPI_MEM_CS_HOLD_TIME_S);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(1), SPI_MEM_CS_SETUP_TIME_V, 0, SPI_MEM_CS_SETUP_TIME_S);
}
void IRAM_ATTR bootloader_flash_clock_config(const esp_image_header_t *pfhdr)
{
uint32_t spi_clk_div = 0;
switch (pfhdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_80M:
spi_clk_div = 1;
break;
case ESP_IMAGE_SPI_SPEED_40M:
spi_clk_div = 2;
break;
case ESP_IMAGE_SPI_SPEED_26M:
spi_clk_div = 3;
break;
case ESP_IMAGE_SPI_SPEED_20M:
spi_clk_div = 4;
break;
default:
break;
}
esp_rom_spiflash_config_clk(spi_clk_div, 0);
}
void IRAM_ATTR bootloader_flash_set_dummy_out(void)
{
REG_SET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FDUMMY_OUT | SPI_MEM_D_POL | SPI_MEM_Q_POL);
REG_SET_BIT(SPI_MEM_CTRL_REG(1), SPI_MEM_FDUMMY_OUT | SPI_MEM_D_POL | SPI_MEM_Q_POL);
}
void IRAM_ATTR bootloader_flash_dummy_config(const esp_image_header_t *pfhdr)
{
bootloader_configure_spi_pins(1);
bootloader_flash_set_dummy_out();
}

Wyświetl plik

@ -0,0 +1,31 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "bootloader_random.h"
#include "esp_log.h"
static const char *TAG = "bootloader_random";
void bootloader_random_enable(void)
{
ESP_LOGW(TAG, "RNG for ESP32-C3 not currently supported"); // IDF-2305
// Don't forget to remove the following line
// *libbootloader_support.a:bootloader_random*.*(.literal.bootloader_random_enable .text.bootloader_random_enable)
// In the bootloader.ld when RNG support is ready for ESP32-C3
}
void bootloader_random_disable(void)
{
ESP_LOGW(TAG, "RNG for ESP32-C3 not currently supported"); // IDF-2305
}

Wyświetl plik

@ -0,0 +1,313 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "flash_qio_mode.h"
#include "esp_rom_gpio.h"
#include "esp_rom_efuse.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
#include "soc/efuse_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/io_mux_reg.h"
#include "soc/assist_debug_reg.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
#include "soc/extmem_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/system_reg.h"
#include "esp32c3/rom/efuse.h"
#include "esp32c3/rom/spi_flash.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/spi_flash.h"
#include "esp32c3/rom/rtc.h"
#include "bootloader_common.h"
#include "bootloader_init.h"
#include "bootloader_clock.h"
#include "bootloader_flash_config.h"
#include "bootloader_mem.h"
#include "regi2c_ctrl.h"
#include "bootloader_console.h"
static const char *TAG = "boot.esp32c3";
void IRAM_ATTR bootloader_configure_spi_pins(int drv)
{
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
uint8_t wp_pin = esp_rom_efuse_get_flash_wp_gpio();
uint8_t clk_gpio_num = SPI_CLK_GPIO_NUM;
uint8_t q_gpio_num = SPI_Q_GPIO_NUM;
uint8_t d_gpio_num = SPI_D_GPIO_NUM;
uint8_t cs0_gpio_num = SPI_CS0_GPIO_NUM;
uint8_t hd_gpio_num = SPI_HD_GPIO_NUM;
uint8_t wp_gpio_num = SPI_WP_GPIO_NUM;
if (spiconfig == 0) {
} else {
clk_gpio_num = spiconfig & 0x3f;
q_gpio_num = (spiconfig >> 6) & 0x3f;
d_gpio_num = (spiconfig >> 12) & 0x3f;
cs0_gpio_num = (spiconfig >> 18) & 0x3f;
hd_gpio_num = (spiconfig >> 24) & 0x3f;
wp_gpio_num = wp_pin;
}
esp_rom_gpio_pad_set_drv(clk_gpio_num, drv);
esp_rom_gpio_pad_set_drv(q_gpio_num, drv);
esp_rom_gpio_pad_set_drv(d_gpio_num, drv);
esp_rom_gpio_pad_set_drv(cs0_gpio_num, drv);
if (hd_gpio_num <= MAX_PAD_GPIO_NUM) {
esp_rom_gpio_pad_set_drv(hd_gpio_num, drv);
}
if (wp_gpio_num <= MAX_PAD_GPIO_NUM) {
esp_rom_gpio_pad_set_drv(wp_gpio_num, drv);
}
}
static void bootloader_reset_mmu(void)
{
Cache_Suspend_ICache();
Cache_Invalidate_ICache_All();
Cache_MMU_Init();
REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_IBUS);
REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_DBUS);
}
static void update_flash_config(const esp_image_header_t *bootloader_hdr)
{
uint32_t size;
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
uint32_t autoload = Cache_Suspend_ICache();
// Set flash chip size
esp_rom_spiflash_config_param(rom_spiflash_legacy_data->chip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode
Cache_Resume_ICache(autoload);
}
static void print_flash_info(const esp_image_header_t *bootloader_hdr)
{
ESP_LOGD(TAG, "magic %02x", bootloader_hdr->magic);
ESP_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count);
ESP_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode);
ESP_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed);
ESP_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size);
const char *str;
switch (bootloader_hdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_40M:
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str);
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
uint32_t spi_ctrl = REG_READ(SPI_MEM_CTRL_REG(0));
if (spi_ctrl & SPI_MEM_FREAD_QIO) {
str = "QIO";
} else if (spi_ctrl & SPI_MEM_FREAD_QUAD) {
str = "QOUT";
} else if (spi_ctrl & SPI_MEM_FREAD_DIO) {
str = "DIO";
} else if (spi_ctrl & SPI_MEM_FREAD_DUAL) {
str = "DOUT";
} else if (spi_ctrl & SPI_MEM_FASTRD_MODE) {
str = "FAST READ";
} else {
str = "SLOW READ";
}
ESP_LOGI(TAG, "SPI Mode : %s", str);
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str);
}
static void IRAM_ATTR bootloader_init_flash_configure(void)
{
bootloader_flash_dummy_config(&bootloader_image_hdr);
bootloader_flash_cs_timing_config();
}
static esp_err_t bootloader_init_spi_flash(void)
{
bootloader_init_flash_configure();
#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
if (spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_SPI && spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
ESP_LOGE(TAG, "SPI flash pins are overridden. Enable CONFIG_SPI_FLASH_ROM_DRIVER_PATCH in menuconfig");
return ESP_FAIL;
}
#endif
esp_rom_spiflash_unlock();
#if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
print_flash_info(&bootloader_image_hdr);
update_flash_config(&bootloader_image_hdr);
//ensure the flash is write-protected
bootloader_enable_wp();
return ESP_OK;
}
static void wdt_reset_cpu0_info_enable(void)
{
REG_SET_BIT(SYSTEM_CPU_PERI_CLK_EN_REG, SYSTEM_CLK_EN_ASSIST_DEBUG);
REG_CLR_BIT(SYSTEM_CPU_PERI_RST_EN_REG, SYSTEM_RST_EN_ASSIST_DEBUG);
REG_WRITE(ASSIST_DEBUG_CORE_0_RCD_EN_REG, ASSIST_DEBUG_CORE_0_RCD_PDEBUGEN | ASSIST_DEBUG_CORE_0_RCD_RECORDEN);
}
static void wdt_reset_info_dump(int cpu)
{
// TODO ESP32-C3 IDF-2118
ESP_LOGE(TAG, "WDT reset info dump is not supported yet", cpu_name);
}
static void bootloader_check_wdt_reset(void)
{
int wdt_rst = 0;
RESET_REASON rst_reas[2];
rst_reas[0] = rtc_get_reset_reason(0);
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
rst_reas[0] == TG0WDT_CPU_RESET || rst_reas[0] == TG1WDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
}
wdt_reset_cpu0_info_enable();
}
static void bootloader_super_wdt_auto_feed(void)
{
REG_WRITE(RTC_CNTL_SWD_WPROTECT_REG, RTC_CNTL_SWD_WKEY_VALUE);
REG_SET_BIT(RTC_CNTL_SWD_CONF_REG, RTC_CNTL_SWD_AUTO_FEED_EN);
REG_WRITE(RTC_CNTL_SWD_WPROTECT_REG, 0);
}
static inline void bootloader_hardware_init(void)
{
// TODO ESP32-C3 IDF-2452
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_XPD_IPH, 1);
REGI2C_WRITE_MASK(I2C_BIAS, I2C_BIAS_DREG_1P1_PVT, 12);
}
static inline void bootloader_glitch_reset_disable(void)
{
// TODO ESP32-C3 IDF-2453
REG_SET_FIELD(RTC_CNTL_FIB_SEL_REG, RTC_CNTL_FIB_SEL, 0);
}
esp_err_t bootloader_init(void)
{
esp_err_t ret = ESP_OK;
bootloader_hardware_init();
bootloader_glitch_reset_disable();
bootloader_super_wdt_auto_feed();
// protect memory region
bootloader_init_mem();
/* check that static RAM is after the stack */
assert(&_bss_start <= &_bss_end);
assert(&_data_start <= &_data_end);
// clear bss section
bootloader_clear_bss_section();
// reset MMU
bootloader_reset_mmu();
// config clock
bootloader_clock_configure();
// initialize console, from now on, we can use esp_log
bootloader_console_init();
/* print 2nd bootloader banner */
bootloader_print_banner();
// update flash ID
bootloader_flash_update_id();
// read bootloader header
if ((ret = bootloader_read_bootloader_header()) != ESP_OK) {
goto err;
}
// read chip revision and check if it's compatible to bootloader
if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) {
goto err;
}
// initialize spi flash
if ((ret = bootloader_init_spi_flash()) != ESP_OK) {
goto err;
}
// check whether a WDT reset happend
bootloader_check_wdt_reset();
// config WDT
bootloader_config_wdt();
// enable RNG early entropy source
bootloader_enable_random();
err:
return ret;
}

Wyświetl plik

@ -0,0 +1,48 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "bootloader_sha.h"
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <sys/param.h>
#include "esp32c3/rom/sha.h"
static SHA_CTX ctx;
bootloader_sha256_handle_t bootloader_sha256_start()
{
// Enable SHA hardware
ets_sha_enable();
ets_sha_init(&ctx, SHA2_256);
return &ctx; // Meaningless non-NULL value
}
void bootloader_sha256_data(bootloader_sha256_handle_t handle, const void *data, size_t data_len)
{
assert(handle != NULL);
assert(data_len % 4 == 0);
ets_sha_update(&ctx, data, data_len, false);
}
void bootloader_sha256_finish(bootloader_sha256_handle_t handle, uint8_t *digest)
{
assert(handle != NULL);
if (digest == NULL) {
bzero(&ctx, sizeof(ctx));
return;
}
ets_sha_finish(&ctx, digest);
}

Wyświetl plik

@ -0,0 +1,296 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <strings.h>
#include "bootloader_flash_priv.h"
#include "bootloader_random.h"
#include "bootloader_utility.h"
#include "esp_image_format.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "esp_secure_boot.h"
#include "esp_log.h"
#include "esp32c3/rom/secure_boot.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/efuse.h"
static const char *TAG = "flash_encrypt";
/* Static functions for stages of flash encryption */
static esp_err_t initialise_flash_encryption(void);
static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis);
static esp_err_t encrypt_bootloader(void);
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions);
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition);
esp_err_t esp_flash_encrypt_check_and_update(void)
{
// TODO ESP32-C3 IDF-2116
uint32_t cnt = REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_SPI_BOOT_CRYPT_CNT);
ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", cnt);
bool flash_crypt_wr_dis = false; // TODO: check if CRYPT_CNT is write disabled
_Static_assert(EFUSE_SPI_BOOT_CRYPT_CNT == 0x7, "assuming CRYPT_CNT is only 3 bits wide");
if (cnt == 1 || cnt == 3 || cnt == 7) {
/* Flash is already encrypted */
int left;
if (cnt == 7 /* || disabled */) {
left = 0;
} else if (cnt == 3) {
left = 1;
} else {
left = 2;
}
ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left);
return ESP_OK;
} else {
/* Flash is not encrypted, so encrypt it! */
return encrypt_flash_contents(cnt, flash_crypt_wr_dis);
}
}
static esp_err_t initialise_flash_encryption(void)
{
/* Before first flash encryption pass, need to initialise key & crypto config */
/* Find out if a key is already set */
bool has_aes128 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL);
bool has_aes256_1 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, NULL);
bool has_aes256_2 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, NULL);
bool has_key = has_aes128 || (has_aes256_1 && has_aes256_2);
if (!has_key && (has_aes256_1 || has_aes256_2)) {
ESP_LOGE(TAG, "Invalid efuse key blocks: Both AES-256 key blocks must be set.");
return ESP_ERR_INVALID_STATE;
}
if (has_key) {
ESP_LOGI(TAG, "Using pre-existing key in efuse");
ESP_LOGE(TAG, "TODO: Check key is read & write protected"); // TODO
} else {
ESP_LOGI(TAG, "Generating new flash encryption key...");
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES256
const unsigned BLOCKS_NEEDED = 2;
const ets_efuse_purpose_t PURPOSE_START = ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1;
const ets_efuse_purpose_t PURPOSE_END = ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2;
#else
const unsigned BLOCKS_NEEDED = 1;
const ets_efuse_purpose_t PURPOSE_START = ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY;
const ets_efuse_purpose_t PURPOSE_END = ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY;
#endif
if (ets_efuse_count_unused_key_blocks() < BLOCKS_NEEDED) {
ESP_LOGE(TAG, "Not enough free efuse key blocks (need %d) to continue", BLOCKS_NEEDED);
return ESP_ERR_INVALID_STATE;
}
for (ets_efuse_purpose_t purpose = PURPOSE_START; purpose <= PURPOSE_END; purpose++) {
uint32_t buf[8] = {0};
bootloader_fill_random(buf, sizeof(buf));
ets_efuse_block_t block = ets_efuse_find_unused_key_block();
ESP_LOGD(TAG, "Writing ETS_EFUSE_BLOCK_KEY%d with purpose %d",
block - ETS_EFUSE_BLOCK_KEY0, purpose);
bootloader_debug_buffer(buf, sizeof(buf), "Key content");
int r = ets_efuse_write_key(block, purpose, buf, sizeof(buf));
bzero(buf, sizeof(buf));
if (r != 0) {
ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.");
return ESP_FAIL;
}
}
ESP_LOGD(TAG, "Key generation complete");
}
ESP_LOGE(TAG, "TODO: burn remaining security protection bits");
return ESP_OK;
}
/* Encrypt all flash data that should be encrypted */
static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_crypt_wr_dis)
{
esp_err_t err;
esp_partition_info_t partition_table[ESP_PARTITION_TABLE_MAX_ENTRIES];
int num_partitions;
/* If the last spi_boot_crypt_cnt bit is burned or write-disabled, the
device can't re-encrypt itself. */
if (flash_crypt_wr_dis || spi_boot_crypt_cnt == EFUSE_SPI_BOOT_CRYPT_CNT) {
ESP_LOGE(TAG, "Cannot re-encrypt data (SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
return ESP_FAIL;
}
if (spi_boot_crypt_cnt == 0) {
/* Very first flash of encrypted data: generate keys, etc. */
err = initialise_flash_encryption();
if (err != ESP_OK) {
return err;
}
}
err = encrypt_bootloader();
if (err != ESP_OK) {
return err;
}
err = encrypt_and_load_partition_table(partition_table, &num_partitions);
if (err != ESP_OK) {
return err;
}
/* Now iterate the just-loaded partition table, looking for entries to encrypt
*/
/* Go through each partition and encrypt if necessary */
for (int i = 0; i < num_partitions; i++) {
err = encrypt_partition(i, &partition_table[i]);
if (err != ESP_OK) {
return err;
}
}
ESP_LOGD(TAG, "All flash regions checked for encryption pass");
/* Set least significant 0-bit in spi_boot_crypt_cnt */
int ffs_inv = __builtin_ffs((~spi_boot_crypt_cnt) & 0x7);
/* ffs_inv shouldn't be zero, as zero implies spi_boot_crypt_cnt == 0xFF */
uint32_t new_spi_boot_crypt_cnt = spi_boot_crypt_cnt + (1 << (ffs_inv - 1));
ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt);
ets_efuse_clear_program_registers();
REG_SET_FIELD(EFUSE_PGM_DATA2_REG, EFUSE_SPI_BOOT_CRYPT_CNT, new_spi_boot_crypt_cnt);
ets_efuse_program(ETS_EFUSE_BLOCK0);
ESP_LOGI(TAG, "Flash encryption completed");
return ESP_OK;
}
static esp_err_t encrypt_bootloader(void)
{
esp_err_t err;
uint32_t image_length;
/* Check for plaintext bootloader (verification will fail if it's already encrypted) */
if (esp_image_verify_bootloader(&image_length) == ESP_OK) {
ESP_LOGD(TAG, "bootloader is plaintext. Encrypting...");
err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err);
return err;
}
if (esp_secure_boot_enabled()) {
// TODO: anything different for secure boot?
}
} else {
ESP_LOGW(TAG, "no valid bootloader was found");
}
return ESP_OK;
}
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions)
{
esp_err_t err;
/* Check for plaintext partition table */
err = bootloader_flash_read(ESP_PARTITION_TABLE_OFFSET, partition_table, ESP_PARTITION_TABLE_MAX_LEN, false);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to read partition table data");
return err;
}
if (esp_partition_table_verify(partition_table, false, num_partitions) == ESP_OK) {
ESP_LOGD(TAG, "partition table is plaintext. Encrypting...");
esp_err_t err = esp_flash_encrypt_region(ESP_PARTITION_TABLE_OFFSET,
FLASH_SECTOR_SIZE);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt partition table in place. %x", err);
return err;
}
} else {
ESP_LOGE(TAG, "Failed to read partition table data - not plaintext?");
return ESP_ERR_INVALID_STATE;
}
/* Valid partition table loaded */
return ESP_OK;
}
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition)
{
esp_err_t err;
bool should_encrypt = (partition->flags & PART_FLAG_ENCRYPTED);
if (partition->type == PART_TYPE_APP) {
/* check if the partition holds a valid unencrypted app */
esp_image_metadata_t data_ignored;
err = esp_image_verify(ESP_IMAGE_VERIFY,
&partition->pos,
&data_ignored);
should_encrypt = (err == ESP_OK);
} else if (partition->type == PART_TYPE_DATA && partition->subtype == PART_SUBTYPE_DATA_OTA) {
/* check if we have ota data partition and the partition should be encrypted unconditionally */
should_encrypt = true;
}
if (!should_encrypt) {
return ESP_OK;
} else {
/* should_encrypt */
ESP_LOGI(TAG, "Encrypting partition %d at offset 0x%x (length 0x%x)...", index, partition->pos.offset, partition->pos.size);
err = esp_flash_encrypt_region(partition->pos.offset, partition->pos.size);
ESP_LOGI(TAG, "Done encrypting");
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt partition %d", index);
}
return err;
}
}
esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
{
esp_err_t err;
uint32_t buf[FLASH_SECTOR_SIZE / sizeof(uint32_t)];
if (src_addr % FLASH_SECTOR_SIZE != 0) {
ESP_LOGE(TAG, "esp_flash_encrypt_region bad src_addr 0x%x", src_addr);
return ESP_FAIL;
}
for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) {
uint32_t sec_start = i + src_addr;
err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false);
if (err != ESP_OK) {
goto flash_failed;
}
err = bootloader_flash_erase_sector(sec_start / FLASH_SECTOR_SIZE);
if (err != ESP_OK) {
goto flash_failed;
}
err = bootloader_flash_write(sec_start, buf, FLASH_SECTOR_SIZE, true);
if (err != ESP_OK) {
goto flash_failed;
}
}
return ESP_OK;
flash_failed:
ESP_LOGE(TAG, "flash operation failed: 0x%x", err);
return err;
}

Wyświetl plik

@ -0,0 +1,45 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_secure_boot.h"
#include "esp_log.h"
#include "esp32c3/rom/secure_boot.h"
#include "esp_rom_efuse.h"
static const char *TAG = "secure_boot";
esp_err_t esp_secure_boot_permanently_enable(void)
{
uint8_t hash[32];
if (esp_rom_efuse_is_secure_boot_enabled()) {
ESP_LOGI(TAG, "secure boot is already enabled, continuing..");
return ESP_OK;
}
ESP_LOGI(TAG, "Verifying bootloader signature...\n");
int r = ets_secure_boot_verify_bootloader(hash, false);
if (r != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify bootloader signature");
return r;
}
ets_efuse_clear_program_registers();
REG_SET_BIT(EFUSE_PGM_DATA3_REG, EFUSE_SECURE_BOOT_EN);
ets_efuse_program(ETS_EFUSE_BLOCK0);
assert(esp_rom_efuse_is_secure_boot_enabled());
ESP_LOGI(TAG, "Secure boot permanently enabled");
return ESP_OK;
}

Wyświetl plik

@ -0,0 +1,93 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "bootloader_flash.h"
#include "bootloader_sha.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "esp32c3/rom/secure_boot.h"
static const char *TAG = "secure_boot";
#define DIGEST_LEN 32
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
ets_secure_boot_key_digests_t trusted_keys = { 0 };
uint8_t digest[DIGEST_LEN];
const uint8_t *data;
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
if ((src_addr + length) % 4096 != 0) {
ESP_LOGE(TAG, "addr 0x%x length 0x%x doesn't end on a sector boundary", src_addr, length);
return ESP_ERR_INVALID_ARG;
}
data = bootloader_mmap(src_addr, length + sizeof(struct ets_secure_boot_sig_block));
if (data == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", src_addr, length + sizeof(ets_secure_boot_signature_t));
return ESP_FAIL;
}
// Calculate digest of main image
#ifdef BOOTLOADER_BUILD
bootloader_sha256_handle_t handle = bootloader_sha256_start();
bootloader_sha256_data(handle, data, length);
bootloader_sha256_finish(handle, digest);
#else
/* Use thread-safe esp-idf SHA function */
esp_sha(SHA2_256, data, length, digest);
#endif
int r = ets_secure_boot_read_key_digests(&trusted_keys);
if (r == ETS_OK) {
const ets_secure_boot_signature_t *sig = (const ets_secure_boot_signature_t *)(data + length);
// TODO: calling this function in IDF app context is unsafe
r = ets_secure_boot_verify_signature(sig, digest, &trusted_keys);
}
bootloader_munmap(data);
return (r == ETS_OK) ? ESP_OK : ESP_FAIL;
}
esp_err_t esp_secure_boot_verify_signature_block(uint32_t sig_block_flash_offs, const uint8_t *image_digest)
{
ets_secure_boot_key_digests_t trusted_keys;
assert(sig_block_flash_offs % 4096 == 0); // TODO: enforce this in a better way
const ets_secure_boot_signature_t *sig = bootloader_mmap(sig_block_flash_offs, sizeof(ets_secure_boot_signature_t));
if (sig == NULL) {
ESP_LOGE(TAG, "Failed to mmap data at offset 0x%x", sig_block_flash_offs);
return ESP_FAIL;
}
int r = ets_secure_boot_read_key_digests(&trusted_keys);
if (r != 0) {
ESP_LOGE(TAG, "No trusted key digests were found in efuse!");
} else {
ESP_LOGD(TAG, "Verifying with RSA-PSS...");
// TODO: calling this function in IDF app context is unsafe
r = ets_secure_boot_verify_signature(sig, image_digest, &trusted_keys);
}
bootloader_munmap(sig);
return (r == 0) ? ESP_OK : ESP_ERR_IMAGE_INVALID;
}

Wyświetl plik

@ -607,6 +607,11 @@ static esp_err_t process_segment_data(intptr_t load_addr, uint32_t data_addr, ui
// Set up the obfuscation value to use for loading
while (ram_obfs_value[0] == 0 || ram_obfs_value[1] == 0) {
bootloader_fill_random(ram_obfs_value, sizeof(ram_obfs_value));
#if CONFIG_IDF_ENV_FPGA
/* FPGA doesn't always emulate the RNG */
ram_obfs_value[0] ^= 0x33;
ram_obfs_value[1] ^= 0x66;
#endif
}
uint32_t *dest = (uint32_t *)load_addr;
#endif

Wyświetl plik

@ -10,7 +10,6 @@
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "bootloader_common.h"
#include "bootloader_util.h"