kopia lustrzana https://github.com/espressif/esp-idf
esp32c6: add esp_hw_support
rodzic
21663bd0b9
commit
23e37393a7
|
@ -45,6 +45,13 @@ if(NOT BOOTLOADER_BUILD)
|
|||
list(APPEND srcs "port/${target}/systimer.c")
|
||||
endif()
|
||||
|
||||
# ESP32C6-TODO
|
||||
if(CONFIG_IDF_TARGET_ESP32C6)
|
||||
list(REMOVE_ITEM srcs
|
||||
"adc_share_hw_ctrl.c" # TODO: IDF-5312
|
||||
)
|
||||
endif()
|
||||
|
||||
else()
|
||||
# Requires "_esp_error_check_failed()" function
|
||||
list(APPEND priv_requires "esp_system")
|
||||
|
|
|
@ -40,7 +40,7 @@ menu "Hardware Settings"
|
|||
|
||||
config ESP_SLEEP_GPIO_RESET_WORKAROUND
|
||||
bool "light sleep GPIO reset workaround"
|
||||
default y if IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32S3
|
||||
default y if IDF_TARGET_ESP32C2 || IDF_TARGET_ESP32C3 || IDF_TARGET_ESP32S3 # TODO: IDF-5641 (esp32c6)
|
||||
select PM_SLP_DISABLE_GPIO if FREERTOS_USE_TICKLESS_IDLE
|
||||
help
|
||||
esp32c2, esp32c3 and esp32s3 will reset at wake-up if GPIO is received a small electrostatic
|
||||
|
@ -165,6 +165,7 @@ menu "Hardware Settings"
|
|||
|
||||
config MMU_PAGE_MODE
|
||||
string
|
||||
default "8KB" if MMU_PAGE_SIZE_8KB
|
||||
default "16KB" if MMU_PAGE_SIZE_16KB
|
||||
default "32KB" if MMU_PAGE_SIZE_32KB
|
||||
default "64KB" if MMU_PAGE_SIZE_64KB
|
||||
|
@ -176,6 +177,7 @@ menu "Hardware Settings"
|
|||
# use of small flash sizes (reducing the wasted space due to alignment), we
|
||||
# need to use the smallest possible MMU page size for the given flash size.
|
||||
hex
|
||||
default 0x2000 if MMU_PAGE_SIZE_8KB
|
||||
default 0x4000 if MMU_PAGE_SIZE_16KB
|
||||
default 0x8000 if MMU_PAGE_SIZE_32KB
|
||||
default 0x10000 if MMU_PAGE_SIZE_64KB
|
||||
|
|
|
@ -9,7 +9,17 @@
|
|||
#include <assert.h>
|
||||
#include "soc/soc.h"
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
// TODO: IDF-5645
|
||||
#if CONFIG_IDF_TARGET_ESP32C6
|
||||
#include "soc/lp_aon_reg.h"
|
||||
#include "soc/pcr_reg.h"
|
||||
#define SYSTEM_CPU_PER_CONF_REG PCR_CPU_WAITI_CONF_REG
|
||||
#define SYSTEM_CPU_WAIT_MODE_FORCE_ON PCR_CPU_WAIT_MODE_FORCE_ON
|
||||
#else
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#endif
|
||||
|
||||
#include "hal/soc_hal.h"
|
||||
#include "hal/mpu_hal.h"
|
||||
#include "esp_bit_defs.h"
|
||||
|
@ -81,6 +91,9 @@ void esp_cpu_unstall(int core_id)
|
|||
|
||||
void esp_cpu_reset(int core_id)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
SET_PERI_REG_MASK(LP_AON_CPUCORE0_CFG_REG, LP_AON_CPU_CORE0_SW_RESET);
|
||||
#else
|
||||
assert(core_id >= 0 && core_id < SOC_CPU_CORES_NUM);
|
||||
#if SOC_CPU_CORES_NUM > 1
|
||||
/*
|
||||
|
@ -93,6 +106,7 @@ void esp_cpu_reset(int core_id)
|
|||
int rtc_cntl_rst_m = RTC_CNTL_SW_PROCPU_RST_M;
|
||||
#endif // SOC_CPU_CORES_NUM > 1
|
||||
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, rtc_cntl_rst_m);
|
||||
#endif
|
||||
}
|
||||
|
||||
void esp_cpu_wait_for_intr(void)
|
||||
|
@ -100,6 +114,7 @@ void esp_cpu_wait_for_intr(void)
|
|||
#if __XTENSA__
|
||||
xt_utils_wait_for_intr();
|
||||
#else
|
||||
// TODO: IDF-5645 (better to implement with ll) C6 register names converted in the #include section at the top
|
||||
if (esp_cpu_dbgr_is_attached() && DPORT_REG_GET_BIT(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON) == 0) {
|
||||
/* when SYSTEM_CPU_WAIT_MODE_FORCE_ON is disabled in WFI mode SBA access to memory does not work for debugger,
|
||||
so do not enter that mode when debugger is connected */
|
||||
|
@ -125,7 +140,13 @@ static bool is_intr_num_resv(int intr_num)
|
|||
{
|
||||
// Workaround to reserve interrupt number 1 for Wi-Fi, 5,8 for Bluetooth, 6 for "permanently disabled interrupt"
|
||||
// [TODO: IDF-2465]
|
||||
const uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8);
|
||||
uint32_t reserved = BIT(1) | BIT(5) | BIT(6) | BIT(8);
|
||||
|
||||
// int_num 0,3,4,7 are inavaliable for PULP cpu
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5728 replace with a better macro name
|
||||
reserved |= BIT(0) | BIT(3) | BIT(4) | BIT(7);
|
||||
#endif
|
||||
|
||||
if (reserved & BIT(intr_num)) {
|
||||
return true;
|
||||
}
|
||||
|
@ -501,6 +522,86 @@ void esp_cpu_configure_region_protection(void)
|
|||
PMP_ENTRY_CFG_SET(14, NONE);
|
||||
PMP_ENTRY_CFG_SET(15, PMP_TOR | NONE);
|
||||
}
|
||||
#elif CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5642
|
||||
void esp_cpu_configure_region_protection(void)
|
||||
{
|
||||
/* Notes on implementation:
|
||||
*
|
||||
* 1) Note: ESP32-C6 CPU doesn't support overlapping PMP regions
|
||||
*
|
||||
* 2) Therefore, we use TOR (top of range) entries to map the whole address
|
||||
* space, bottom to top.
|
||||
*
|
||||
* 3) There are not enough entries to describe all the memory regions 100% accurately.
|
||||
*
|
||||
* 4) This means some gaps (invalid memory) are accessible. Priority for extending regions
|
||||
* to cover gaps is to extend read-only or read-execute regions or read-only regions only
|
||||
* (executing unmapped addresses should always fault with invalid instruction, read-only means
|
||||
* stores will correctly fault even if reads may return some invalid value.)
|
||||
*
|
||||
* 5) Entries are grouped in order with some static asserts to try and verify everything is
|
||||
* correct.
|
||||
*/
|
||||
const unsigned NONE = PMP_L | PMP_TOR;
|
||||
const unsigned RW = PMP_L | PMP_TOR | PMP_R | PMP_W;
|
||||
const unsigned RX = PMP_L | PMP_TOR | PMP_R | PMP_X;
|
||||
const unsigned RWX = PMP_L | PMP_TOR | PMP_R | PMP_W | PMP_X;
|
||||
|
||||
// 1. Gap at bottom of address space
|
||||
PMP_ENTRY_SET(0, SOC_DEBUG_LOW, NONE);
|
||||
|
||||
// 2. Debug region
|
||||
PMP_ENTRY_SET(1, SOC_DEBUG_HIGH, RWX);
|
||||
_Static_assert(SOC_DEBUG_LOW < SOC_DEBUG_HIGH, "Invalid CPU debug region");
|
||||
|
||||
// 3. Gap between debug region & IROM
|
||||
PMP_ENTRY_SET(2, SOC_IROM_MASK_LOW, NONE);
|
||||
_Static_assert(SOC_DEBUG_HIGH < SOC_IROM_MASK_LOW, "Invalid PMP entry order");
|
||||
|
||||
// 4. ROM
|
||||
PMP_ENTRY_SET(3, SOC_DROM_MASK_HIGH, RX);
|
||||
_Static_assert(SOC_IROM_MASK_LOW < SOC_DROM_MASK_HIGH, "Invalid ROM region");
|
||||
|
||||
// 5. Gap between ROM & RAM
|
||||
PMP_ENTRY_SET(4, SOC_IRAM_LOW, NONE);
|
||||
_Static_assert(SOC_DROM_MASK_HIGH < SOC_IRAM_LOW, "Invalid PMP entry order");
|
||||
|
||||
// 6. RAM
|
||||
PMP_ENTRY_SET(5, SOC_IRAM_HIGH, RWX);
|
||||
_Static_assert(SOC_IRAM_LOW < SOC_IRAM_HIGH, "Invalid RAM region");
|
||||
|
||||
// 7. Gap between DRAM and I_Cache
|
||||
PMP_ENTRY_SET(6, SOC_IROM_LOW, NONE);
|
||||
_Static_assert(SOC_IRAM_HIGH < SOC_IROM_LOW, "Invalid PMP entry order");
|
||||
|
||||
// 8. I_Cache (flash)
|
||||
PMP_ENTRY_SET(7, SOC_IROM_HIGH, RWX);
|
||||
_Static_assert(SOC_IROM_LOW < SOC_IROM_HIGH, "Invalid I_Cache region");
|
||||
|
||||
// 9. D_Cache (flash)
|
||||
PMP_ENTRY_SET(8, SOC_DROM_HIGH, RW);
|
||||
_Static_assert(SOC_DROM_LOW < SOC_DROM_HIGH, "Invalid D_Cache region");
|
||||
|
||||
// 10. Gap between D_Cache & LP_RAM
|
||||
PMP_ENTRY_SET(9, SOC_RTC_IRAM_LOW, NONE);
|
||||
_Static_assert(SOC_DROM_HIGH < SOC_RTC_IRAM_LOW, "Invalid PMP entry order");
|
||||
|
||||
// 16. LP memory
|
||||
PMP_ENTRY_SET(10, SOC_RTC_IRAM_HIGH, RWX);
|
||||
_Static_assert(SOC_RTC_IRAM_LOW < SOC_RTC_IRAM_HIGH, "Invalid RTC IRAM region");
|
||||
|
||||
// 17. Gap between LP memory & peripheral addresses
|
||||
PMP_ENTRY_SET(11, SOC_PERIPHERAL_LOW, NONE);
|
||||
_Static_assert(SOC_RTC_IRAM_HIGH < SOC_PERIPHERAL_LOW, "Invalid PMP entry order");
|
||||
|
||||
// 18. Peripheral addresses
|
||||
PMP_ENTRY_SET(12, SOC_PERIPHERAL_HIGH, RW);
|
||||
_Static_assert(SOC_PERIPHERAL_LOW < SOC_PERIPHERAL_HIGH, "Invalid peripheral region");
|
||||
|
||||
// 19. End of address space
|
||||
PMP_ENTRY_SET(13, UINT32_MAX, NONE); // all but last 4 bytes
|
||||
PMP_ENTRY_SET(14, UINT32_MAX, PMP_L | PMP_NA4); // last 4 bytes
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ---------------------------------------------------- Debugging ------------------------------------------------------
|
||||
|
|
|
@ -35,6 +35,9 @@
|
|||
#elif CONFIG_IDF_TARGET_ESP32C2
|
||||
#include "esp32c2/rom/rtc.h"
|
||||
#include "esp32c2/rtc.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32C6
|
||||
#include "esp32c6/rom/rtc.h"
|
||||
#include "esp32c6/rtc.h"
|
||||
#endif
|
||||
|
||||
#define MHZ (1000000)
|
||||
|
@ -76,7 +79,7 @@ int IRAM_ATTR esp_clk_xtal_freq(void)
|
|||
return rtc_clk_xtal_freq_get() * MHZ;
|
||||
}
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32C3 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32C2
|
||||
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESPS3
|
||||
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
|
||||
{
|
||||
/* Update scale factors used by esp_rom_delay_us */
|
||||
|
|
|
@ -26,6 +26,7 @@ typedef enum {
|
|||
CHIP_ESP32C3 = 5, //!< ESP32-C3
|
||||
CHIP_ESP32H2 = 6, //!< ESP32-H2
|
||||
CHIP_ESP32C2 = 12, //!< ESP32-C2
|
||||
CHIP_ESP32C6 = 13, //!< ESP32-C6
|
||||
} esp_chip_model_t;
|
||||
|
||||
/* Chip feature flags, used in esp_chip_info_t */
|
||||
|
|
|
@ -41,6 +41,8 @@ typedef enum {
|
|||
#define UNIVERSAL_MAC_ADDR_NUM CONFIG_ESP32H2_UNIVERSAL_MAC_ADDRESSES
|
||||
#elif CONFIG_IDF_TARGET_ESP32C2
|
||||
#define UNIVERSAL_MAC_ADDR_NUM CONFIG_ESP32C2_UNIVERSAL_MAC_ADDRESSES
|
||||
#elif CONFIG_IDF_TARGET_ESP32C6
|
||||
#define UNIVERSAL_MAC_ADDR_NUM CONFIG_ESP32C6_UNIVERSAL_MAC_ADDRESSES
|
||||
#endif
|
||||
/** @endcond */
|
||||
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for HMAC cryptography peripheral
|
||||
*
|
||||
* Internally also locks the SHA peripheral, as the HMAC depends on the SHA peripheral
|
||||
*/
|
||||
void esp_crypto_hmac_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for HMAC cryptography peripheral
|
||||
*
|
||||
* Internally also releases the SHA peripheral, as the HMAC depends on the SHA peripheral
|
||||
*/
|
||||
void esp_crypto_hmac_lock_release(void);
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for DS cryptography peripheral
|
||||
*
|
||||
* Internally also locks the HMAC (which locks SHA), AES and MPI peripheral, as the DS depends on these peripherals
|
||||
*/
|
||||
void esp_crypto_ds_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for DS cryptography peripheral
|
||||
*
|
||||
* Internally also releases the HMAC (which locks SHA), AES and MPI peripheral, as the DS depends on these peripherals
|
||||
*/
|
||||
void esp_crypto_ds_lock_release(void);
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for the SHA and AES cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_sha_aes_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for the SHA and AES cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_sha_aes_lock_release(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Acquire lock for the mpi cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_mpi_lock_acquire(void);
|
||||
|
||||
/**
|
||||
* @brief Release lock for the mpi/rsa cryptography peripheral.
|
||||
*
|
||||
*/
|
||||
void esp_crypto_mpi_lock_release(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,220 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "esp_hmac.h"
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_HMAC_FAIL ESP_ERR_HW_CRYPTO_BASE + 0x1 /*!< HMAC peripheral problem */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_KEY ESP_ERR_HW_CRYPTO_BASE + 0x2 /*!< given HMAC key isn't correct,
|
||||
HMAC peripheral problem */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_DIGEST ESP_ERR_HW_CRYPTO_BASE + 0x4 /*!< message digest check failed,
|
||||
result is invalid */
|
||||
#define ESP32C6_ERR_HW_CRYPTO_DS_INVALID_PADDING ESP_ERR_HW_CRYPTO_BASE + 0x5 /*!< padding check failed, but result
|
||||
is produced anyway and can be read*/
|
||||
|
||||
#define ESP_DS_IV_BIT_LEN 128
|
||||
#define ESP_DS_IV_LEN (ESP_DS_IV_BIT_LEN / 8)
|
||||
#define ESP_DS_SIGNATURE_MAX_BIT_LEN 3072
|
||||
#define ESP_DS_SIGNATURE_MD_BIT_LEN 256
|
||||
#define ESP_DS_SIGNATURE_M_PRIME_BIT_LEN 32
|
||||
#define ESP_DS_SIGNATURE_L_BIT_LEN 32
|
||||
#define ESP_DS_SIGNATURE_PADDING_BIT_LEN 64
|
||||
|
||||
/* Length of parameter 'C' stored in flash, in bytes
|
||||
- Operands Y, M and r_bar; each 3072 bits
|
||||
- Operand MD (message digest); 256 bits
|
||||
- Operands M' and L; each 32 bits
|
||||
- Operand beta (padding value; 64 bits
|
||||
*/
|
||||
#define ESP_DS_C_LEN (((ESP_DS_SIGNATURE_MAX_BIT_LEN * 3 \
|
||||
+ ESP_DS_SIGNATURE_MD_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_M_PRIME_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_L_BIT_LEN \
|
||||
+ ESP_DS_SIGNATURE_PADDING_BIT_LEN) / 8))
|
||||
|
||||
typedef struct esp_ds_context esp_ds_context_t;
|
||||
|
||||
typedef enum {
|
||||
ESP_DS_RSA_1024 = (1024 / 32) - 1,
|
||||
ESP_DS_RSA_2048 = (2048 / 32) - 1,
|
||||
ESP_DS_RSA_3072 = (3072 / 32) - 1
|
||||
} esp_digital_signature_length_t;
|
||||
|
||||
/**
|
||||
* Encrypted private key data. Recommended to store in flash in this format.
|
||||
*
|
||||
* @note This struct has to match to one from the ROM code! This documentation is mostly taken from there.
|
||||
*/
|
||||
typedef struct esp_digital_signature_data {
|
||||
/**
|
||||
* RSA LENGTH register parameters
|
||||
* (number of words in RSA key & operands, minus one).
|
||||
*
|
||||
* Max value 127 (for RSA 3072).
|
||||
*
|
||||
* This value must match the length field encrypted and stored in 'c',
|
||||
* or invalid results will be returned. (The DS peripheral will
|
||||
* always use the value in 'c', not this value, so an attacker can't
|
||||
* alter the DS peripheral results this way, it will just truncate or
|
||||
* extend the message and the resulting signature in software.)
|
||||
*
|
||||
* @note In IDF, the enum type length is the same as of type unsigned, so they can be used interchangably.
|
||||
* See the ROM code for the original declaration of struct \c ets_ds_data_t.
|
||||
*/
|
||||
esp_digital_signature_length_t rsa_length;
|
||||
|
||||
/**
|
||||
* IV value used to encrypt 'c'
|
||||
*/
|
||||
uint32_t iv[ESP_DS_IV_BIT_LEN / 32];
|
||||
|
||||
/**
|
||||
* Encrypted Digital Signature parameters. Result of AES-CBC encryption
|
||||
* of plaintext values. Includes an encrypted message digest.
|
||||
*/
|
||||
uint8_t c[ESP_DS_C_LEN];
|
||||
} esp_ds_data_t;
|
||||
|
||||
/**
|
||||
* Plaintext parameters used by Digital Signature.
|
||||
*
|
||||
* This is only used for encrypting the RSA parameters by calling esp_ds_encrypt_params().
|
||||
* Afterwards, the result can be stored in flash or in other persistent memory.
|
||||
* The encryption is a prerequisite step before any signature operation can be done.
|
||||
*/
|
||||
typedef struct {
|
||||
uint32_t Y[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA exponent
|
||||
uint32_t M[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA modulus
|
||||
uint32_t Rb[ESP_DS_SIGNATURE_MAX_BIT_LEN / 32]; //!< RSA r inverse operand
|
||||
uint32_t M_prime; //!< RSA M prime operand
|
||||
uint32_t length; //!< RSA length in words (32 bit)
|
||||
} esp_ds_p_data_t;
|
||||
|
||||
/**
|
||||
* @brief Sign the message with a hardware key from specific key slot.
|
||||
* The function calculates a plain RSA signature with help of the DS peripheral.
|
||||
* The RSA encryption operation is as follows:
|
||||
* Z = XY mod M where,
|
||||
* Z is the signature, X is the input message,
|
||||
* Y and M are the RSA private key parameters.
|
||||
*
|
||||
* This function is a wrapper around \c esp_ds_finish_sign() and \c esp_ds_start_sign(), so do not use them
|
||||
* in parallel.
|
||||
* It blocks until the signing is finished and then returns the signature.
|
||||
*
|
||||
* @note This function locks the HMAC, SHA, AES and RSA components during its entire execution time.
|
||||
*
|
||||
* @param message the message to be signed; its length should be (data->rsa_length + 1)*4 bytes
|
||||
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
|
||||
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
|
||||
* signing key data
|
||||
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the signature was written to the parameter \c signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
|
||||
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
|
||||
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
|
||||
* since the message digest matches.
|
||||
*/
|
||||
esp_err_t esp_ds_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
void *signature);
|
||||
|
||||
/**
|
||||
* @brief Start the signing process.
|
||||
*
|
||||
* This function yields a context object which needs to be passed to \c esp_ds_finish_sign() to finish the signing
|
||||
* process.
|
||||
* The function calculates a plain RSA signature with help of the DS peripheral.
|
||||
* The RSA encryption operation is as follows:
|
||||
* Z = XY mod M where,
|
||||
* Z is the signature, X is the input message,
|
||||
* Y and M are the RSA private key parameters.
|
||||
*
|
||||
* @note This function locks the HMAC, SHA, AES and RSA components, so the user has to ensure to call
|
||||
* \c esp_ds_finish_sign() in a timely manner.
|
||||
*
|
||||
* @param message the message to be signed; its length should be (data->rsa_length + 1)*4 bytes
|
||||
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
|
||||
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
|
||||
* signing key data
|
||||
* @param esp_ds_ctx the context object which is needed for finishing the signing process later
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation was started now and has to be finished with \c esp_ds_finish_sign()
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
|
||||
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
|
||||
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
|
||||
*/
|
||||
esp_err_t esp_ds_start_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
esp_ds_context_t **esp_ds_ctx);
|
||||
|
||||
/**
|
||||
* Return true if the DS peripheral is busy, otherwise false.
|
||||
*
|
||||
* @note Only valid if \c esp_ds_start_sign() was called before.
|
||||
*/
|
||||
bool esp_ds_is_busy(void);
|
||||
|
||||
/**
|
||||
* @brief Finish the signing process.
|
||||
*
|
||||
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
|
||||
* @param esp_ds_ctx the context object retreived by \c esp_ds_start_sign()
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
|
||||
* This means that the encrypted RSA key parameters are invalid, indicating that they may have been tampered
|
||||
* with or indicating a flash error, etc.
|
||||
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
|
||||
* since the message digest matches (see TRM for more details).
|
||||
*/
|
||||
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx);
|
||||
|
||||
/**
|
||||
* @brief Encrypt the private key parameters.
|
||||
*
|
||||
* The encryption is a prerequisite step before any signature operation can be done.
|
||||
* It is not strictly necessary to use this encryption function, the encryption could also happen on an external
|
||||
* device.
|
||||
*
|
||||
* @param data Output buffer to store encrypted data, suitable for later use generating signatures.
|
||||
* The allocated memory must be in internal memory and word aligned since it's filled by DMA. Both is asserted
|
||||
* at run time.
|
||||
* @param iv Pointer to 16 byte IV buffer, will be copied into 'data'. Should be randomly generated bytes each time.
|
||||
* @param p_data Pointer to input plaintext key data. The expectation is this data will be deleted after this process
|
||||
* is done and 'data' is stored.
|
||||
* @param key Pointer to 32 bytes of key data. Type determined by key_type parameter. The expectation is the
|
||||
* corresponding HMAC key will be stored to efuse and then permanently erased.
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
|
||||
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or p_data->rsa_length is too long
|
||||
*/
|
||||
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
|
||||
const void *iv,
|
||||
const esp_ds_p_data_t *p_data,
|
||||
const void *key);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,92 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#ifndef _ESP_HMAC_H_
|
||||
#define _ESP_HMAC_H_
|
||||
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* The possible efuse keys for the HMAC peripheral
|
||||
*/
|
||||
typedef enum {
|
||||
HMAC_KEY0 = 0,
|
||||
HMAC_KEY1,
|
||||
HMAC_KEY2,
|
||||
HMAC_KEY3,
|
||||
HMAC_KEY4,
|
||||
HMAC_KEY5,
|
||||
HMAC_KEY_MAX
|
||||
} hmac_key_id_t;
|
||||
|
||||
/**
|
||||
* @brief
|
||||
* Calculate the HMAC of a given message.
|
||||
*
|
||||
* Calculate the HMAC \c hmac of a given message \c message with length \c message_len.
|
||||
* SHA256 is used for the calculation (fixed on ESP32S2).
|
||||
*
|
||||
* @note Uses the HMAC peripheral in "upstream" mode.
|
||||
*
|
||||
* @param key_id Determines which of the 6 key blocks in the efuses should be used for the HMAC calcuation.
|
||||
* The corresponding purpose field of the key block in the efuse must be set to the HMAC upstream purpose value.
|
||||
* @param message the message for which to calculate the HMAC
|
||||
* @param message_len message length
|
||||
* return ESP_ERR_INVALID_STATE if unsuccessful
|
||||
* @param [out] hmac the hmac result; the buffer behind the provided pointer must be a writeable buffer of 32 bytes
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK, if the calculation was successful,
|
||||
* * ESP_ERR_INVALID_ARG if message or hmac is a nullptr or if key_id out of range
|
||||
* * ESP_FAIL, if the hmac calculation failed
|
||||
*/
|
||||
esp_err_t esp_hmac_calculate(hmac_key_id_t key_id,
|
||||
const void *message,
|
||||
size_t message_len,
|
||||
uint8_t *hmac);
|
||||
|
||||
/**
|
||||
* @brief Use HMAC peripheral in Downstream mode to re-enable the JTAG, if it is not permanently disabled by HW.
|
||||
* In downstream mode, HMAC calculations performed by peripheral are used internally and not provided back to user.
|
||||
*
|
||||
* @param key_id Determines which of the 6 key blocks in the efuses should be used for the HMAC calculation.
|
||||
* The corresponding purpose field of the key block in the efuse must be set to HMAC downstream purpose.
|
||||
*
|
||||
* @param token Pre calculated HMAC value of the 32-byte 0x00 using SHA-256 and the known private HMAC key. The key is already
|
||||
* programmed to a eFuse key block. The key block number is provided as the first parameter to this function.
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK, if the key_purpose of the key_id matches to HMAC downstread mode,
|
||||
* The API returns success even if calculated HMAC does not match with the provided token.
|
||||
* However, The JTAG will be re-enabled only if the calculated HMAC value matches with provided token,
|
||||
* otherwise JTAG will remain disabled.
|
||||
* * ESP_FAIL, if the key_purpose of the key_id is not set to HMAC downstream purpose
|
||||
* or JTAG is permanently disabled by EFUSE_HARD_DIS_JTAG eFuse parameter.
|
||||
* * ESP_ERR_INVALID_ARG, invalid input arguments
|
||||
*
|
||||
* @note Return value of the API does not indicate the JTAG status.
|
||||
*/
|
||||
esp_err_t esp_hmac_jtag_enable(hmac_key_id_t key_id, const uint8_t *token);
|
||||
|
||||
/**
|
||||
* @brief Disable the JTAG which might be enabled using the HMAC downstream mode. This function just clears the result generated
|
||||
* by calling esp_hmac_jtag_enable() API.
|
||||
*
|
||||
* @return
|
||||
* * ESP_OK return ESP_OK after writing the HMAC_SET_INVALIDATE_JTAG_REG with value 1.
|
||||
*/
|
||||
esp_err_t esp_hmac_jtag_disable(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // _ESP_HMAC_H_
|
|
@ -0,0 +1,32 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @file esp32c6/rtc.h
|
||||
*
|
||||
* This file contains declarations of rtc related functions.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Get current value of RTC counter in microseconds
|
||||
*
|
||||
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
|
||||
*
|
||||
* @return current value of RTC counter in microseconds
|
||||
*/
|
||||
uint64_t esp_rtc_get_time_us(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,175 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// ESP32-C6 PMS memory protection types
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Memory types recognized by PMS
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_TYPE_NONE = 0x00000000,
|
||||
MEMPROT_TYPE_IRAM0_SRAM = 0x00000001,
|
||||
MEMPROT_TYPE_DRAM0_SRAM = 0x00000002,
|
||||
MEMPROT_TYPE_IRAM0_RTCFAST = 0x00000004,
|
||||
MEMPROT_TYPE_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_TYPE_INVALID = 0x80000000,
|
||||
MEMPROT_TYPE_IRAM0_ANY = MEMPROT_TYPE_IRAM0_SRAM | MEMPROT_TYPE_IRAM0_RTCFAST
|
||||
} esp_mprot_mem_t;
|
||||
|
||||
/**
|
||||
* @brief Splitting address (line) type
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_SPLIT_ADDR_NONE = 0x00000000,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_DRAM0 = 0x00000001,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_LINE_0 = 0x00000002,
|
||||
MEMPROT_SPLIT_ADDR_IRAM0_LINE_1 = 0x00000004,
|
||||
MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_0 = 0x00000008,
|
||||
MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_1 = 0x00000010,
|
||||
MEMPROT_SPLIT_ADDR_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_SPLIT_ADDR_INVALID = 0x80000000,
|
||||
MEMPROT_SPLIT_ADDR_MAIN = MEMPROT_SPLIT_ADDR_IRAM0_DRAM0
|
||||
} esp_mprot_split_addr_t;
|
||||
|
||||
/**
|
||||
* @brief PMS area type (memory space between adjacent splitting addresses or above/below the main splt.address)
|
||||
*/
|
||||
typedef enum {
|
||||
MEMPROT_PMS_AREA_NONE = 0x00000000,
|
||||
MEMPROT_PMS_AREA_IRAM0_0 = 0x00000001,
|
||||
MEMPROT_PMS_AREA_IRAM0_1 = 0x00000002,
|
||||
MEMPROT_PMS_AREA_IRAM0_2 = 0x00000004,
|
||||
MEMPROT_PMS_AREA_IRAM0_3 = 0x00000008,
|
||||
MEMPROT_PMS_AREA_DRAM0_0 = 0x00000010,
|
||||
MEMPROT_PMS_AREA_DRAM0_1 = 0x00000020,
|
||||
MEMPROT_PMS_AREA_DRAM0_2 = 0x00000040,
|
||||
MEMPROT_PMS_AREA_DRAM0_3 = 0x00000080,
|
||||
MEMPROT_PMS_AREA_IRAM0_RTCFAST_LO = 0x00000100,
|
||||
MEMPROT_PMS_AREA_IRAM0_RTCFAST_HI = 0x00000200,
|
||||
MEMPROT_PMS_AREA_ALL = 0x7FFFFFFF,
|
||||
MEMPROT_PMS_AREA_INVALID = 0x80000000
|
||||
} esp_mprot_pms_area_t;
|
||||
|
||||
/**
|
||||
* @brief Memory protection configuration
|
||||
*/
|
||||
typedef struct {
|
||||
bool invoke_panic_handler; /*!< Register PMS violation interrupt for panic-handling */
|
||||
bool lock_feature; /*!< Lock all PMS settings */
|
||||
void *split_addr; /*!< Main I/D splitting address */
|
||||
uint32_t mem_type_mask; /*!< Memory types required to protect. See esp_mprot_mem_t enum */
|
||||
} esp_memp_config_t;
|
||||
|
||||
#define ESP_MEMPROT_DEFAULT_CONFIG() { \
|
||||
.invoke_panic_handler = true, \
|
||||
.lock_feature = true, \
|
||||
.split_addr = NULL, \
|
||||
.mem_type_mask = MEMPROT_TYPE_ALL \
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts Memory protection type to string
|
||||
*
|
||||
* @param mem_type Memory protection type
|
||||
*/
|
||||
static inline const char *esp_mprot_mem_type_to_str(const esp_mprot_mem_t mem_type)
|
||||
{
|
||||
switch (mem_type) {
|
||||
case MEMPROT_TYPE_NONE:
|
||||
return "NONE";
|
||||
case MEMPROT_TYPE_IRAM0_SRAM:
|
||||
return "IRAM0_SRAM";
|
||||
case MEMPROT_TYPE_DRAM0_SRAM:
|
||||
return "DRAM0_SRAM";
|
||||
case MEMPROT_TYPE_IRAM0_RTCFAST:
|
||||
return "IRAM0_RTCFAST";
|
||||
case MEMPROT_TYPE_IRAM0_ANY:
|
||||
return "IRAM0_ANY";
|
||||
case MEMPROT_TYPE_ALL:
|
||||
return "ALL";
|
||||
default:
|
||||
return "INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts Splitting address type to string
|
||||
*
|
||||
* @param line_type Split line type
|
||||
*/
|
||||
static inline const char *esp_mprot_split_addr_to_str(const esp_mprot_split_addr_t line_type)
|
||||
{
|
||||
switch (line_type) {
|
||||
case MEMPROT_SPLIT_ADDR_NONE:
|
||||
return "SPLIT_ADDR_NONE";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_DRAM0:
|
||||
return "SPLIT_ADDR_IRAM0_DRAM0";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_LINE_0:
|
||||
return "SPLIT_ADDR_IRAM0_LINE_0";
|
||||
case MEMPROT_SPLIT_ADDR_IRAM0_LINE_1:
|
||||
return "SPLIT_ADDR_IRAM0_LINE_1";
|
||||
case MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_0:
|
||||
return "SPLIT_ADDR_DRAM0_DMA_LINE_0";
|
||||
case MEMPROT_SPLIT_ADDR_DRAM0_DMA_LINE_1:
|
||||
return "SPLIT_ADDR_DRAM0_DMA_LINE_1";
|
||||
case MEMPROT_SPLIT_ADDR_ALL:
|
||||
return "SPLIT_ADDR_ALL";
|
||||
default:
|
||||
return "SPLIT_ADDR_INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Converts PMS Area type to string
|
||||
*
|
||||
* @param area_type PMS Area type
|
||||
*/
|
||||
static inline const char *esp_mprot_pms_area_to_str(const esp_mprot_pms_area_t area_type)
|
||||
{
|
||||
switch (area_type) {
|
||||
case MEMPROT_PMS_AREA_NONE:
|
||||
return "PMS_AREA_NONE";
|
||||
case MEMPROT_PMS_AREA_IRAM0_0:
|
||||
return "PMS_AREA_IRAM0_0";
|
||||
case MEMPROT_PMS_AREA_IRAM0_1:
|
||||
return "PMS_AREA_IRAM0_1";
|
||||
case MEMPROT_PMS_AREA_IRAM0_2:
|
||||
return "PMS_AREA_IRAM0_2";
|
||||
case MEMPROT_PMS_AREA_IRAM0_3:
|
||||
return "PMS_AREA_IRAM0_3";
|
||||
case MEMPROT_PMS_AREA_DRAM0_0:
|
||||
return "PMS_AREA_DRAM0_0";
|
||||
case MEMPROT_PMS_AREA_DRAM0_1:
|
||||
return "PMS_AREA_DRAM0_1";
|
||||
case MEMPROT_PMS_AREA_DRAM0_2:
|
||||
return "PMS_AREA_DRAM0_2";
|
||||
case MEMPROT_PMS_AREA_DRAM0_3:
|
||||
return "PMS_AREA_DRAM0_3";
|
||||
case MEMPROT_PMS_AREA_IRAM0_RTCFAST_LO:
|
||||
return "PMS_AREA_IRAM0_RTCFAST_LO";
|
||||
case MEMPROT_PMS_AREA_IRAM0_RTCFAST_HI:
|
||||
return "PMS_AREA_IRAM0_RTCFAST_HI";
|
||||
case MEMPROT_PMS_AREA_ALL:
|
||||
return "PMS_AREA_ALL";
|
||||
default:
|
||||
return "PMS_AREA_INVALID";
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
|
@ -13,9 +13,10 @@ entries:
|
|||
cpu: esp_cpu_compare_and_set (noflash)
|
||||
esp_memory_utils (noflash)
|
||||
rtc_clk (noflash)
|
||||
rtc_init:rtc_vddsdio_set_config (noflash)
|
||||
rtc_pm (noflash_text)
|
||||
rtc_sleep (noflash_text)
|
||||
if IDF_TARGET_ESP32C6 = n: # TODO: IDF-5645
|
||||
rtc_init:rtc_vddsdio_set_config (noflash)
|
||||
rtc_pm (noflash_text)
|
||||
rtc_sleep (noflash_text)
|
||||
rtc_time (noflash_text)
|
||||
if IDF_TARGET_ESP32 = y || IDF_TARGET_ESP32S2 = y:
|
||||
rtc_wdt (noflash_text)
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
set(srcs "rtc_clk_init.c"
|
||||
"rtc_clk.c"
|
||||
# "rtc_init.c" // TODO: IDF-5645
|
||||
# "rtc_pm.c" // TODO: IDF-5645
|
||||
# "rtc_sleep.c" // TODO: IDF-5645
|
||||
"rtc_time.c"
|
||||
"chip_info.c"
|
||||
)
|
||||
|
||||
if(NOT BOOTLOADER_BUILD)
|
||||
# list(APPEND srcs "esp_hmac.c" // TODO: IDF-5355
|
||||
# "esp_crypto_lock.c"
|
||||
# "esp_ds.c") // TODO: IDF-5360
|
||||
|
||||
if(CONFIG_ESP_SYSTEM_MEMPROT_FEATURE)
|
||||
list(APPEND srcs "esp_memprot.c" "../esp_memprot_conv.c")
|
||||
endif()
|
||||
|
||||
endif()
|
||||
|
||||
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
|
||||
|
||||
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
|
||||
target_include_directories(${COMPONENT_LIB} PUBLIC . private_include)
|
||||
target_include_directories(${COMPONENT_LIB} PRIVATE ../hal)
|
|
@ -0,0 +1,15 @@
|
|||
choice ESP32C6_REV_MIN
|
||||
prompt "Minimum Supported ESP32-C6 Revision"
|
||||
default ESP32C6_REV_MIN_0
|
||||
help
|
||||
Minimum revision that ESP-IDF would support.
|
||||
|
||||
Only supporting higher chip revisions can reduce binary size.
|
||||
|
||||
config ESP32C6_REV_MIN_0
|
||||
bool "Rev 0"
|
||||
endchoice
|
||||
|
||||
config ESP32C6_REV_MIN
|
||||
int
|
||||
default 0 if ESP32C6_REV_MIN_0
|
|
@ -0,0 +1,43 @@
|
|||
choice ESP32C6_UNIVERSAL_MAC_ADDRESSES
|
||||
bool "Number of universally administered (by IEEE) MAC address"
|
||||
default ESP32C6_UNIVERSAL_MAC_ADDRESSES_FOUR
|
||||
help
|
||||
Configure the number of universally administered (by IEEE) MAC addresses.
|
||||
|
||||
During initialization, MAC addresses for each network interface are generated or derived from a
|
||||
single base MAC address.
|
||||
|
||||
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
|
||||
Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
|
||||
sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
|
||||
|
||||
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
|
||||
receive a universally administered MAC address. These are generated sequentially by adding 0
|
||||
and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
|
||||
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
|
||||
addresses, respectively.
|
||||
|
||||
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
|
||||
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
|
||||
addresses in this range (either 2 or 4 per device.)
|
||||
|
||||
Note that ESP32-C6 has no integrated Ethernet MAC. Although it's possible to use the esp_read_mac()
|
||||
API to return a MAC for Ethernet, this can only be used with an external MAC peripheral.
|
||||
|
||||
config ESP32C6_UNIVERSAL_MAC_ADDRESSES_TWO
|
||||
bool "Two"
|
||||
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
|
||||
select ESP_MAC_ADDR_UNIVERSE_BT
|
||||
|
||||
config ESP32C6_UNIVERSAL_MAC_ADDRESSES_FOUR
|
||||
bool "Four"
|
||||
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
|
||||
select ESP_MAC_ADDR_UNIVERSE_WIFI_AP
|
||||
select ESP_MAC_ADDR_UNIVERSE_BT
|
||||
select ESP_MAC_ADDR_UNIVERSE_ETH
|
||||
endchoice
|
||||
|
||||
config ESP32C6_UNIVERSAL_MAC_ADDRESSES
|
||||
int
|
||||
default 2 if ESP32C6_UNIVERSAL_MAC_ADDRESSES_TWO
|
||||
default 4 if ESP32C6_UNIVERSAL_MAC_ADDRESSES_FOUR
|
|
@ -0,0 +1,40 @@
|
|||
choice RTC_CLK_SRC
|
||||
# TODO: IDF-5346
|
||||
prompt "RTC clock source"
|
||||
default RTC_CLK_SRC_INT_RC
|
||||
help
|
||||
Choose which clock is used as RTC clock source.
|
||||
|
||||
config RTC_CLK_SRC_INT_RC
|
||||
bool "Internal 136kHz RC oscillator"
|
||||
config RTC_CLK_SRC_EXT_CRYS
|
||||
bool "External 32kHz crystal"
|
||||
select ESP_SYSTEM_RTC_EXT_XTAL
|
||||
config RTC_CLK_SRC_EXT_OSC
|
||||
bool "External 32kHz oscillator at 32K_XP pin"
|
||||
select ESP_SYSTEM_RTC_EXT_OSC
|
||||
config RTC_CLK_SRC_INT_8MD256
|
||||
bool "Internal 17.5MHz oscillator, divided by 256"
|
||||
endchoice
|
||||
|
||||
config RTC_CLK_CAL_CYCLES
|
||||
int "Number of cycles for RTC_SLOW_CLK calibration"
|
||||
default 3000 if RTC_CLK_SRC_EXT_CRYS || RTC_CLK_SRC_EXT_OSC || RTC_CLK_SRC_INT_8MD256
|
||||
default 1024 if RTC_CLK_SRC_INT_RC
|
||||
range 0 27000 if RTC_CLK_SRC_EXT_CRYS || RTC_CLK_SRC_EXT_OSC || RTC_CLK_SRC_INT_8MD256
|
||||
range 0 32766 if RTC_CLK_SRC_INT_RC
|
||||
help
|
||||
When the startup code initializes RTC_SLOW_CLK, it can perform
|
||||
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
|
||||
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
|
||||
by the calibration routine. Higher numbers increase calibration
|
||||
precision, which may be important for applications which spend a lot of
|
||||
time in deep sleep. Lower numbers reduce startup time.
|
||||
|
||||
When this option is set to 0, clock calibration will not be performed at
|
||||
startup, and approximate clock frequencies will be assumed:
|
||||
|
||||
- 150000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
|
||||
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
|
||||
In case more value will help improve the definition of the launch of the crystal.
|
||||
If the crystal could not start, it will be switched to internal RC.
|
|
@ -0,0 +1,18 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "esp_chip_info.h"
|
||||
#include "hal/efuse_hal.h"
|
||||
|
||||
void esp_chip_info(esp_chip_info_t *out_info)
|
||||
{
|
||||
memset(out_info, 0, sizeof(*out_info));
|
||||
out_info->model = CHIP_ESP32C6;
|
||||
out_info->revision = efuse_hal_chip_revision();
|
||||
out_info->cores = 1;
|
||||
out_info->features = CHIP_FEATURE_WIFI_BGN | CHIP_FEATURE_BLE;
|
||||
}
|
|
@ -0,0 +1,75 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <sys/lock.h>
|
||||
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
/* Lock overview:
|
||||
SHA: peripheral independent, but DMA is shared with AES
|
||||
AES: peripheral independent, but DMA is shared with SHA
|
||||
MPI/RSA: independent
|
||||
HMAC: needs SHA
|
||||
DS: needs HMAC (which needs SHA), AES and MPI
|
||||
*/
|
||||
|
||||
/* Lock for DS peripheral */
|
||||
static _lock_t s_crypto_ds_lock;
|
||||
|
||||
/* Lock for HMAC peripheral */
|
||||
static _lock_t s_crypto_hmac_lock;
|
||||
|
||||
/* Lock for the MPI/RSA peripheral, also used by the DS peripheral */
|
||||
static _lock_t s_crypto_mpi_lock;
|
||||
|
||||
/* Single lock for SHA and AES, sharing a reserved GDMA channel */
|
||||
static _lock_t s_crypto_sha_aes_lock;
|
||||
|
||||
void esp_crypto_hmac_lock_acquire(void)
|
||||
{
|
||||
_lock_acquire(&s_crypto_hmac_lock);
|
||||
esp_crypto_sha_aes_lock_acquire();
|
||||
}
|
||||
|
||||
void esp_crypto_hmac_lock_release(void)
|
||||
{
|
||||
esp_crypto_sha_aes_lock_release();
|
||||
_lock_release(&s_crypto_hmac_lock);
|
||||
}
|
||||
|
||||
void esp_crypto_ds_lock_acquire(void)
|
||||
{
|
||||
_lock_acquire(&s_crypto_ds_lock);
|
||||
esp_crypto_hmac_lock_acquire();
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
}
|
||||
|
||||
void esp_crypto_ds_lock_release(void)
|
||||
{
|
||||
esp_crypto_mpi_lock_release();
|
||||
esp_crypto_hmac_lock_release();
|
||||
_lock_release(&s_crypto_ds_lock);
|
||||
}
|
||||
|
||||
void esp_crypto_sha_aes_lock_acquire(void)
|
||||
{
|
||||
_lock_acquire(&s_crypto_sha_aes_lock);
|
||||
}
|
||||
|
||||
void esp_crypto_sha_aes_lock_release(void)
|
||||
{
|
||||
_lock_release(&s_crypto_sha_aes_lock);
|
||||
}
|
||||
|
||||
void esp_crypto_mpi_lock_acquire(void)
|
||||
{
|
||||
_lock_acquire(&s_crypto_mpi_lock);
|
||||
}
|
||||
|
||||
void esp_crypto_mpi_lock_release(void)
|
||||
{
|
||||
_lock_release(&s_crypto_mpi_lock);
|
||||
}
|
|
@ -0,0 +1,224 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "hal/ds_hal.h"
|
||||
#include "hal/ds_ll.h"
|
||||
#include "hal/hmac_hal.h"
|
||||
#include "esp32c6/rom/digital_signature.h"
|
||||
#include "esp_timer.h"
|
||||
#include "esp_ds.h"
|
||||
|
||||
struct esp_ds_context {
|
||||
const esp_ds_data_t *data;
|
||||
};
|
||||
|
||||
/**
|
||||
* The vtask delay \c esp_ds_sign() is using while waiting for completion of the signing operation.
|
||||
*/
|
||||
#define ESP_DS_SIGN_TASK_DELAY_MS 10
|
||||
|
||||
#define RSA_LEN_MAX 127
|
||||
|
||||
/*
|
||||
* esp_digital_signature_length_t is used in esp_ds_data_t in contrast to ets_ds_data_t, where unsigned is used.
|
||||
* Check esp_digital_signature_length_t's width here because it's converted to unsigned using raw casts.
|
||||
*/
|
||||
_Static_assert(sizeof(esp_digital_signature_length_t) == sizeof(unsigned),
|
||||
"The size of esp_digital_signature_length_t and unsigned has to be the same");
|
||||
|
||||
/*
|
||||
* esp_ds_data_t is used in the encryption function but casted to ets_ds_data_t.
|
||||
* Check esp_ds_data_t's width here because it's converted using raw casts.
|
||||
*/
|
||||
_Static_assert(sizeof(esp_ds_data_t) == sizeof(ets_ds_data_t),
|
||||
"The size of esp_ds_data_t and ets_ds_data_t has to be the same");
|
||||
|
||||
static void ds_acquire_enable(void)
|
||||
{
|
||||
esp_crypto_ds_lock_acquire();
|
||||
|
||||
// We also enable SHA and HMAC here. SHA is used by HMAC, HMAC is used by DS.
|
||||
periph_module_enable(PERIPH_HMAC_MODULE);
|
||||
periph_module_enable(PERIPH_SHA_MODULE);
|
||||
periph_module_enable(PERIPH_DS_MODULE);
|
||||
|
||||
hmac_hal_start();
|
||||
}
|
||||
|
||||
static void ds_disable_release(void)
|
||||
{
|
||||
ds_hal_finish();
|
||||
|
||||
periph_module_disable(PERIPH_DS_MODULE);
|
||||
periph_module_disable(PERIPH_SHA_MODULE);
|
||||
periph_module_disable(PERIPH_HMAC_MODULE);
|
||||
|
||||
esp_crypto_ds_lock_release();
|
||||
}
|
||||
|
||||
esp_err_t esp_ds_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
void *signature)
|
||||
{
|
||||
// Need to check signature here, otherwise the signature is only checked when the signing has finished and fails
|
||||
// but the signing isn't uninitialized and the mutex is still locked.
|
||||
if (!signature) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
esp_ds_context_t *context;
|
||||
esp_err_t result = esp_ds_start_sign(message, data, key_id, &context);
|
||||
if (result != ESP_OK) {
|
||||
return result;
|
||||
}
|
||||
|
||||
while (esp_ds_is_busy())
|
||||
vTaskDelay(ESP_DS_SIGN_TASK_DELAY_MS / portTICK_PERIOD_MS);
|
||||
|
||||
return esp_ds_finish_sign(signature, context);
|
||||
}
|
||||
|
||||
esp_err_t esp_ds_start_sign(const void *message,
|
||||
const esp_ds_data_t *data,
|
||||
hmac_key_id_t key_id,
|
||||
esp_ds_context_t **esp_ds_ctx)
|
||||
{
|
||||
if (!message || !data || !esp_ds_ctx) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
if (key_id >= HMAC_KEY_MAX) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
if (!(data->rsa_length == ESP_DS_RSA_1024
|
||||
|| data->rsa_length == ESP_DS_RSA_2048
|
||||
|| data->rsa_length == ESP_DS_RSA_3072)) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
ds_acquire_enable();
|
||||
|
||||
// initiate hmac
|
||||
uint32_t conf_error = hmac_hal_configure(HMAC_OUTPUT_DS, key_id);
|
||||
if (conf_error) {
|
||||
ds_disable_release();
|
||||
return ESP32C6_ERR_HW_CRYPTO_DS_HMAC_FAIL;
|
||||
}
|
||||
|
||||
ds_hal_start();
|
||||
|
||||
// check encryption key from HMAC
|
||||
int64_t start_time = esp_timer_get_time();
|
||||
while (ds_ll_busy() != 0) {
|
||||
if ((esp_timer_get_time() - start_time) > SOC_DS_KEY_CHECK_MAX_WAIT_US) {
|
||||
ds_disable_release();
|
||||
return ESP32C6_ERR_HW_CRYPTO_DS_INVALID_KEY;
|
||||
}
|
||||
}
|
||||
|
||||
esp_ds_context_t *context = malloc(sizeof(esp_ds_context_t));
|
||||
if (!context) {
|
||||
ds_disable_release();
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
|
||||
size_t rsa_len = (data->rsa_length + 1) * 4;
|
||||
ds_hal_write_private_key_params(data->c);
|
||||
ds_hal_configure_iv(data->iv);
|
||||
ds_hal_write_message(message, rsa_len);
|
||||
|
||||
// initiate signing
|
||||
ds_hal_start_sign();
|
||||
|
||||
context->data = data;
|
||||
*esp_ds_ctx = context;
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
bool esp_ds_is_busy(void)
|
||||
{
|
||||
return ds_hal_busy();
|
||||
}
|
||||
|
||||
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx)
|
||||
{
|
||||
if (!signature || !esp_ds_ctx) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
const esp_ds_data_t *data = esp_ds_ctx->data;
|
||||
unsigned rsa_len = (data->rsa_length + 1) * 4;
|
||||
|
||||
while (ds_hal_busy()) { }
|
||||
|
||||
ds_signature_check_t sig_check_result = ds_hal_read_result((uint8_t*) signature, (size_t) rsa_len);
|
||||
|
||||
esp_err_t return_value = ESP_OK;
|
||||
|
||||
if (sig_check_result == DS_SIGNATURE_MD_FAIL || sig_check_result == DS_SIGNATURE_PADDING_AND_MD_FAIL) {
|
||||
return_value = ESP32C6_ERR_HW_CRYPTO_DS_INVALID_DIGEST;
|
||||
}
|
||||
|
||||
if (sig_check_result == DS_SIGNATURE_PADDING_FAIL) {
|
||||
return_value = ESP32C6_ERR_HW_CRYPTO_DS_INVALID_PADDING;
|
||||
}
|
||||
|
||||
free(esp_ds_ctx);
|
||||
|
||||
hmac_hal_clean();
|
||||
|
||||
ds_disable_release();
|
||||
|
||||
return return_value;
|
||||
}
|
||||
|
||||
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
|
||||
const void *iv,
|
||||
const esp_ds_p_data_t *p_data,
|
||||
const void *key)
|
||||
{
|
||||
if (!p_data) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
esp_err_t result = ESP_OK;
|
||||
|
||||
esp_crypto_ds_lock_acquire();
|
||||
periph_module_enable(PERIPH_AES_MODULE);
|
||||
periph_module_enable(PERIPH_DS_MODULE);
|
||||
periph_module_enable(PERIPH_SHA_MODULE);
|
||||
periph_module_enable(PERIPH_HMAC_MODULE);
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
ets_ds_data_t *ds_data = (ets_ds_data_t*) data;
|
||||
const ets_ds_p_data_t *ds_plain_data = (const ets_ds_p_data_t*) p_data;
|
||||
|
||||
ets_ds_result_t ets_result = ets_ds_encrypt_params(ds_data, iv, ds_plain_data, key, ETS_DS_KEY_HMAC);
|
||||
|
||||
if (ets_result == ETS_DS_INVALID_PARAM) {
|
||||
result = ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
periph_module_disable(PERIPH_HMAC_MODULE);
|
||||
periph_module_disable(PERIPH_SHA_MODULE);
|
||||
periph_module_disable(PERIPH_DS_MODULE);
|
||||
periph_module_disable(PERIPH_AES_MODULE);
|
||||
esp_crypto_ds_lock_release();
|
||||
|
||||
return result;
|
||||
}
|
|
@ -0,0 +1,182 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
// TODO: IDF-5355 Copy frome C3
|
||||
|
||||
#include <string.h>
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "esp32c6/rom/hmac.h"
|
||||
#include "esp32c6/rom/ets_sys.h"
|
||||
#include "esp_efuse.h"
|
||||
#include "esp_efuse_table.h"
|
||||
#include "esp_hmac.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
|
||||
#include "hal/hmac_hal.h"
|
||||
|
||||
#define SHA256_BLOCK_SZ 64
|
||||
#define SHA256_PAD_SZ 8
|
||||
|
||||
static const char *TAG = "esp_hmac";
|
||||
|
||||
/**
|
||||
* @brief Apply the HMAC padding without the embedded length.
|
||||
*
|
||||
* @note This function does not check the data length, it is the responsibility of the other functions in this
|
||||
* module to make sure that \c data_len is at most SHA256_BLOCK_SZ - 1 so the padding fits in.
|
||||
* Otherwise, this function has undefined behavior.
|
||||
* Note however, that for the actual HMAC implementation on ESP32C6, the length also needs to be applied at the end
|
||||
* of the block. This function alone deosn't do that.
|
||||
*/
|
||||
static void write_and_padd(uint8_t *block, const uint8_t *data, uint16_t data_len)
|
||||
{
|
||||
memcpy(block, data, data_len);
|
||||
// Apply a one bit, followed by zero bits (refer to the ESP32C6 TRM).
|
||||
block[data_len] = 0x80;
|
||||
bzero(block + data_len + 1, SHA256_BLOCK_SZ - data_len - 1);
|
||||
}
|
||||
|
||||
esp_err_t esp_hmac_calculate(hmac_key_id_t key_id,
|
||||
const void *message,
|
||||
size_t message_len,
|
||||
uint8_t *hmac)
|
||||
{
|
||||
const uint8_t *message_bytes = (const uint8_t *)message;
|
||||
|
||||
if (!message || !hmac) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (key_id >= HMAC_KEY_MAX) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
esp_crypto_hmac_lock_acquire();
|
||||
|
||||
// We also enable SHA and DS here. SHA is used by HMAC, DS will otherwise hold SHA in reset state.
|
||||
periph_module_enable(PERIPH_HMAC_MODULE);
|
||||
periph_module_enable(PERIPH_SHA_MODULE);
|
||||
periph_module_enable(PERIPH_DS_MODULE);
|
||||
|
||||
hmac_hal_start();
|
||||
|
||||
uint32_t conf_error = hmac_hal_configure(HMAC_OUTPUT_USER, key_id);
|
||||
if (conf_error) {
|
||||
esp_crypto_hmac_lock_release();
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
if (message_len + 1 + SHA256_PAD_SZ <= SHA256_BLOCK_SZ) {
|
||||
// If message including padding is only one block...
|
||||
// Last message block, so apply SHA-256 padding rules in software
|
||||
uint8_t block[SHA256_BLOCK_SZ];
|
||||
uint64_t bit_len = __builtin_bswap64(message_len * 8 + 512);
|
||||
|
||||
write_and_padd(block, message_bytes, message_len);
|
||||
// Final block: append the bit length in this block and signal padding to peripheral
|
||||
memcpy(block + SHA256_BLOCK_SZ - sizeof(bit_len),
|
||||
&bit_len, sizeof(bit_len));
|
||||
hmac_hal_write_one_block_512(block);
|
||||
} else {
|
||||
// If message including padding is needs more than one block
|
||||
|
||||
// write all blocks without padding except the last one
|
||||
size_t remaining_blocks = message_len / SHA256_BLOCK_SZ;
|
||||
for (int i = 1; i < remaining_blocks; i++) {
|
||||
hmac_hal_write_block_512(message_bytes);
|
||||
message_bytes += SHA256_BLOCK_SZ;
|
||||
hmac_hal_next_block_normal();
|
||||
}
|
||||
|
||||
// If message fits into one block but without padding, we must not write another block.
|
||||
if (remaining_blocks) {
|
||||
hmac_hal_write_block_512(message_bytes);
|
||||
message_bytes += SHA256_BLOCK_SZ;
|
||||
}
|
||||
|
||||
size_t remaining = message_len % SHA256_BLOCK_SZ;
|
||||
// Last message block, so apply SHA-256 padding rules in software
|
||||
uint8_t block[SHA256_BLOCK_SZ];
|
||||
uint64_t bit_len = __builtin_bswap64(message_len * 8 + 512);
|
||||
|
||||
// If the remaining message and appended padding doesn't fit into a single block, we have to write an
|
||||
// extra block with the rest of the message and potential padding first.
|
||||
if (remaining >= SHA256_BLOCK_SZ - SHA256_PAD_SZ) {
|
||||
write_and_padd(block, message_bytes, remaining);
|
||||
hmac_hal_next_block_normal();
|
||||
hmac_hal_write_block_512(block);
|
||||
bzero(block, SHA256_BLOCK_SZ);
|
||||
} else {
|
||||
write_and_padd(block, message_bytes, remaining);
|
||||
}
|
||||
memcpy(block + SHA256_BLOCK_SZ - sizeof(bit_len),
|
||||
&bit_len, sizeof(bit_len));
|
||||
hmac_hal_next_block_padding();
|
||||
hmac_hal_write_block_512(block);
|
||||
}
|
||||
|
||||
// Read back result (bit swapped)
|
||||
hmac_hal_read_result_256(hmac);
|
||||
|
||||
periph_module_disable(PERIPH_DS_MODULE);
|
||||
periph_module_disable(PERIPH_SHA_MODULE);
|
||||
periph_module_disable(PERIPH_HMAC_MODULE);
|
||||
|
||||
esp_crypto_hmac_lock_release();
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static ets_efuse_block_t convert_key_type(hmac_key_id_t key_id) {
|
||||
return ETS_EFUSE_BLOCK_KEY0 + (ets_efuse_block_t) key_id;
|
||||
}
|
||||
|
||||
esp_err_t esp_hmac_jtag_enable(hmac_key_id_t key_id, const uint8_t *token)
|
||||
{
|
||||
int ets_status;
|
||||
esp_err_t err = ESP_OK;
|
||||
|
||||
if ((!token) || (key_id >= HMAC_KEY_MAX))
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
|
||||
/* Check if JTAG is permanently disabled by HW Disable eFuse */
|
||||
if (esp_efuse_read_field_bit(ESP_EFUSE_DIS_PAD_JTAG)) {
|
||||
ESP_LOGE(TAG, "JTAG disabled permanently.");
|
||||
return ESP_FAIL;
|
||||
}
|
||||
|
||||
esp_crypto_hmac_lock_acquire();
|
||||
|
||||
ets_status = ets_jtag_enable_temporarily(token, convert_key_type(key_id));
|
||||
|
||||
if (ets_status != ETS_OK) {
|
||||
// ets_jtag_enable_temporarily returns either ETS_OK or ETS_FAIL
|
||||
err = ESP_FAIL;
|
||||
ESP_LOGE(TAG, "JTAG re-enabling failed (%d)", err);
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "HMAC computation in downstream mode is completed.");
|
||||
|
||||
ets_hmac_disable();
|
||||
|
||||
esp_crypto_hmac_lock_release();
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
esp_err_t esp_hmac_jtag_disable()
|
||||
{
|
||||
esp_crypto_hmac_lock_acquire();
|
||||
|
||||
REG_SET_BIT(HMAC_SET_INVALIDATE_JTAG_REG, HMAC_SET_INVALIDATE_JTAG);
|
||||
|
||||
esp_crypto_hmac_lock_release();
|
||||
|
||||
ESP_LOGD(TAG, "Invalidate JTAG result register. JTAG disabled.");
|
||||
|
||||
return ESP_OK;
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
// TODO: IDF-5684
|
||||
// ESP32C6 has no memory permission management mechanism based on dividing lines,
|
||||
// TEE-based implementation can be added here
|
|
@ -0,0 +1,226 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "esp32c6/rom/ets_sys.h"
|
||||
#include "esp32c6/rom/rtc.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "esp_hw_log.h"
|
||||
#include "esp_rom_sys.h"
|
||||
#include "hal/usb_serial_jtag_ll.h"
|
||||
#include "hal/clk_tree_ll.h"
|
||||
#include "hal/regi2c_ctrl_ll.h"
|
||||
#include "soc/lp_clkrst_reg.h"
|
||||
|
||||
static const char *TAG = "rtc_clk";
|
||||
|
||||
void rtc_clk_32k_enable(bool enable)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_32k_enable_external(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_32k_bootstrap(uint32_t cycle)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
bool rtc_clk_32k_enabled(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
bool rtc_clk_8m_enabled(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool rtc_clk_8md256_enabled(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
void rtc_clk_slow_src_set(soc_rtc_slow_clk_src_t clk_src)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
soc_rtc_slow_clk_src_t rtc_clk_slow_src_get(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return REG_GET_FIELD(LP_CLKRST_LP_CLK_CONF_REG, LP_CLKRST_SLOW_CLK_SEL);
|
||||
}
|
||||
|
||||
uint32_t rtc_clk_slow_freq_get_hz(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
switch (rtc_clk_slow_freq_get()) {
|
||||
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_150K;
|
||||
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
|
||||
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
|
||||
default: return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void rtc_clk_fast_src_set(soc_rtc_fast_clk_src_t clk_src)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
soc_rtc_fast_clk_src_t rtc_clk_fast_src_get(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void rtc_clk_bbpll_disable(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
static void rtc_clk_bbpll_enable(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
static void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
/**
|
||||
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
|
||||
* PLL must already be enabled.
|
||||
* @param cpu_freq new CPU frequency
|
||||
*/
|
||||
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
#endif
|
||||
|
||||
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t *out_config)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t *config)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t *out_config)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t *config)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_cpu_freq_set_xtal(void)
|
||||
{
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_cpu_freq_set_xtal() has not been implemented yet");
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
#if 0
|
||||
/**
|
||||
* Switch to XTAL frequency. Does not disable the PLL.
|
||||
*/
|
||||
static void rtc_clk_cpu_freq_to_xtal(int freq, int div)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
static void rtc_clk_cpu_freq_to_8m(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
#endif
|
||||
|
||||
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
|
||||
{
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_xtal_freq_get() has not been implemented yet");
|
||||
// TODO: IDF-5645
|
||||
return 40;
|
||||
}
|
||||
|
||||
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_apb_freq_update(uint32_t apb_freq)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
uint32_t rtc_clk_apb_freq_get(void)
|
||||
{
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_apb_freq_get() has not been implemented yet");
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
void rtc_clk_divider_set(uint32_t div)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_clk_8m_divider_set(uint32_t div)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_dig_clk8m_enable(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
void rtc_dig_clk8m_disable(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
}
|
||||
|
||||
bool rtc_dig_8m_enabled(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static bool rtc_clk_set_bbpll_always_on(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Name used in libphy.a:phy_chip_v7.o
|
||||
* TODO: update the library to use rtc_clk_xtal_freq_get
|
||||
*/
|
||||
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));
|
|
@ -0,0 +1,84 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include "esp32c6/rom/ets_sys.h"
|
||||
#include "esp32c6/rom/rtc.h"
|
||||
#include "esp32c6/rom/uart.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/efuse_periph.h"
|
||||
#include "esp_cpu.h"
|
||||
#include "hal/regi2c_ctrl_ll.h"
|
||||
#include "esp_hw_log.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_rom_uart.h"
|
||||
|
||||
static const char *TAG = "rtc_clk_init";
|
||||
|
||||
void rtc_clk_init(rtc_clk_config_t cfg)
|
||||
{
|
||||
ESP_HW_LOGW(TAG, "rtc_clk_init() has not been implemented yet");
|
||||
#if 0 // TODO: IDF-5645
|
||||
rtc_cpu_freq_config_t old_config, new_config;
|
||||
|
||||
/* Set tuning parameters for 8M and 150k clocks.
|
||||
* Note: this doesn't attempt to set the clocks to precise frequencies.
|
||||
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
|
||||
* - SCK_DCAP value controls tuning of 150k clock.
|
||||
* The higher the value of DCAP is, the lower is the frequency.
|
||||
* - CK8M_DFREQ value controls tuning of 8M clock.
|
||||
* CLK_8M_DFREQ constant gives the best temperature characteristics.
|
||||
*/
|
||||
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
|
||||
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
|
||||
|
||||
/* Configure 150k clock division */
|
||||
rtc_clk_divider_set(cfg.clk_rtc_clk_div);
|
||||
|
||||
/* Configure 8M clock division */
|
||||
rtc_clk_8m_divider_set(cfg.clk_8m_clk_div);
|
||||
|
||||
/* Reset (disable) i2c internal bus for all regi2c registers */
|
||||
regi2c_ctrl_ll_i2c_reset(); // TODO: This should be move out from rtc_clk_init
|
||||
/* Enable the internal bus used to configure BBPLL */
|
||||
regi2c_ctrl_ll_i2c_bbpll_enable(); // TODO: This should be moved to bbpll_set_config
|
||||
|
||||
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
|
||||
esp_rom_uart_tx_wait_idle(0);
|
||||
rtc_clk_xtal_freq_update(xtal_freq);
|
||||
rtc_clk_apb_freq_update(xtal_freq * MHZ);
|
||||
|
||||
/* Set CPU frequency */
|
||||
rtc_clk_cpu_freq_get_config(&old_config);
|
||||
uint32_t freq_before = old_config.freq_mhz;
|
||||
bool res = rtc_clk_cpu_freq_mhz_to_config(cfg.cpu_freq_mhz, &new_config);
|
||||
if (!res) {
|
||||
ESP_HW_LOGE(TAG, "invalid CPU frequency value");
|
||||
abort();
|
||||
}
|
||||
rtc_clk_cpu_freq_set_config(&new_config);
|
||||
|
||||
/* Re-calculate the ccount to make time calculation correct. */
|
||||
esp_cpu_set_cycle_count( (uint64_t)esp_cpu_get_cycle_count() * cfg.cpu_freq_mhz / freq_before );
|
||||
|
||||
/* Slow & fast clocks setup */
|
||||
// We will not power off RC_FAST in bootloader stage even if it is not being used as any
|
||||
// cpu / rtc_fast / rtc_slow clock sources, this is because RNG always needs it in the bootloader stage.
|
||||
bool need_rc_fast_en = true;
|
||||
bool need_rc_fast_d256_en = false;
|
||||
if (cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
|
||||
rtc_clk_32k_enable(true);
|
||||
} else if (cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
|
||||
need_rc_fast_d256_en = true;
|
||||
}
|
||||
rtc_clk_8m_enable(need_rc_fast_en, need_rc_fast_d256_en);
|
||||
rtc_clk_fast_src_set(cfg.fast_clk_src);
|
||||
rtc_clk_slow_src_set(cfg.slow_clk_src);
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,7 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
// TODO: IDF-5645
|
|
@ -0,0 +1,7 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
// TODO: IDF-5645
|
|
@ -0,0 +1,7 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
// TODO: IDF-5645
|
|
@ -0,0 +1,103 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include "esp32c6/rom/ets_sys.h"
|
||||
#include "soc/rtc.h"
|
||||
// #include "soc/rtc_cntl_reg.h"
|
||||
#include "hal/clk_tree_ll.h"
|
||||
#include "soc/timer_group_reg.h"
|
||||
#include "esp_rom_sys.h"
|
||||
|
||||
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
|
||||
* This feature counts the number of XTAL clock cycles within a given number of
|
||||
* RTC_SLOW_CLK cycles.
|
||||
*
|
||||
* Slow clock calibration feature has two modes of operation: one-off and cycling.
|
||||
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
|
||||
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
|
||||
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
|
||||
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
|
||||
* enabled using TIMG_RTC_CALI_START bit.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
|
||||
* @param cal_clk which clock to calibrate
|
||||
* @param slowclk_cycles number of slow clock cycles to count
|
||||
* @return number of XTAL clock cycles within the given number of slow clock cycles
|
||||
*/
|
||||
// TODO: IDF-5645
|
||||
static const char *TAG = "rtc_time";
|
||||
|
||||
uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_cal_internal() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_cal_ratio() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_cal() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_time_us_to_slowclk() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_time_slowclk_to_us() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t rtc_time_get(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_time_get() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t rtc_light_slp_time_get(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_light_slp_time_get() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint64_t rtc_deep_slp_time_get(void)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_deep_slp_time_get() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
||||
|
||||
void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_wait_for_slow_cycle() has not been implemented yet");
|
||||
}
|
||||
|
||||
uint32_t rtc_clk_freq_cal(uint32_t cal_val)
|
||||
{
|
||||
// TODO: IDF-5645
|
||||
ESP_EARLY_LOGW(TAG, "rtc_clk_freq_cal() has not been implemented yet");
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,22 @@
|
|||
/*
|
||||
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "esp_private/systimer.h"
|
||||
|
||||
/**
|
||||
* @brief systimer's clock source is fixed to XTAL (40MHz), and has a fixed fractional divider (2.5).
|
||||
* So the resolution of the systimer is 40MHz/2.5 = 16MHz.
|
||||
*/
|
||||
|
||||
uint64_t systimer_ticks_to_us(uint64_t ticks)
|
||||
{
|
||||
return ticks / 16;
|
||||
}
|
||||
|
||||
uint64_t systimer_us_to_ticks(uint64_t us)
|
||||
{
|
||||
return us * 16;
|
||||
}
|
|
@ -27,6 +27,12 @@
|
|||
#endif
|
||||
#include "sys/queue.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
static const char *TAG = "rtc_module";
|
||||
#endif
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
|
||||
#define NOT_REGISTERED (-1)
|
||||
|
||||
portMUX_TYPE rtc_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
@ -90,9 +96,14 @@ out:
|
|||
portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
|
||||
return err;
|
||||
}
|
||||
#endif // !CONFIG_IDF_TARGET_ESP32C6 TODO: IDF-5645
|
||||
|
||||
esp_err_t rtc_isr_register(intr_handler_t handler, void* handler_arg, uint32_t rtc_intr_mask, uint32_t flags)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
ESP_LOGW(TAG, "rtc_isr_register() has not been implemented yet");
|
||||
return ESP_OK;
|
||||
#else
|
||||
esp_err_t err = rtc_isr_ensure_installed();
|
||||
if (err != ESP_OK) {
|
||||
return err;
|
||||
|
@ -115,10 +126,15 @@ esp_err_t rtc_isr_register(intr_handler_t handler, void* handler_arg, uint32_t r
|
|||
SLIST_INSERT_HEAD(&s_rtc_isr_handler_list, item, next);
|
||||
portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
|
||||
return ESP_OK;
|
||||
#endif
|
||||
}
|
||||
|
||||
esp_err_t rtc_isr_deregister(intr_handler_t handler, void* handler_arg)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
ESP_LOGW(TAG, "rtc_isr_deregister() has not been implemented yet");
|
||||
return ESP_OK;
|
||||
#else
|
||||
rtc_isr_handler_t* it;
|
||||
rtc_isr_handler_t* prev = NULL;
|
||||
bool found = false;
|
||||
|
@ -141,8 +157,10 @@ esp_err_t rtc_isr_deregister(intr_handler_t handler, void* handler_arg)
|
|||
}
|
||||
portEXIT_CRITICAL(&s_rtc_isr_handler_list_lock);
|
||||
return found ? ESP_OK : ESP_ERR_INVALID_STATE;
|
||||
#endif
|
||||
}
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
/**
|
||||
* @brief This helper function can be used to avoid the interrupt to be triggered with cache disabled.
|
||||
* There are lots of different signals on RTC module (i.e. sleep_wakeup, wdt, brownout_detect, etc.)
|
||||
|
@ -160,19 +178,25 @@ static void s_rtc_isr_noniram_hook_relieve(uint32_t rtc_intr_mask)
|
|||
{
|
||||
rtc_intr_cache &= ~rtc_intr_mask;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
IRAM_ATTR void rtc_isr_noniram_disable(uint32_t cpu)
|
||||
{
|
||||
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
if (rtc_isr_cpu == cpu) {
|
||||
rtc_intr_enabled |= RTCCNTL.int_ena.val;
|
||||
RTCCNTL.int_ena.val &= rtc_intr_cache;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
IRAM_ATTR void rtc_isr_noniram_enable(uint32_t cpu)
|
||||
{
|
||||
#if !CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
if (rtc_isr_cpu == cpu) {
|
||||
RTCCNTL.int_ena.val = rtc_intr_enabled;
|
||||
rtc_intr_enabled = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -78,6 +78,10 @@
|
|||
#include "esp32c2/rom/cache.h"
|
||||
#include "esp32c2/rom/rtc.h"
|
||||
#include "soc/extmem_reg.h"
|
||||
#elif CONFIG_IDF_TARGET_ESP32C6
|
||||
#include "esp32c6/rom/cache.h"
|
||||
#include "esp32c6/rom/rtc.h"
|
||||
#include "soc/extmem_reg.h"
|
||||
#endif
|
||||
|
||||
// If light sleep time is less than that, don't power down flash
|
||||
|
@ -107,6 +111,9 @@
|
|||
#elif CONFIG_IDF_TARGET_ESP32C2
|
||||
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (118)
|
||||
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (9)
|
||||
#elif CONFIG_IDF_TARGET_ESP32C6
|
||||
#define DEFAULT_SLEEP_OUT_OVERHEAD_US (118)// TODO: IDF-5348
|
||||
#define DEFAULT_HARDWARE_OUT_OVERHEAD_US (9)
|
||||
#endif
|
||||
|
||||
#define LIGHT_SLEEP_TIME_OVERHEAD_US DEFAULT_HARDWARE_OUT_OVERHEAD_US
|
||||
|
@ -789,7 +796,11 @@ esp_err_t esp_light_sleep_start(void)
|
|||
rtc_vddsdio_config_t vddsdio_config = rtc_vddsdio_get_config();
|
||||
|
||||
// Safety net: enable WDT in case exit from light sleep fails
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5653
|
||||
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &LP_WDT};
|
||||
#else
|
||||
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
|
||||
#endif
|
||||
bool wdt_was_enabled = wdt_hal_is_enabled(&rtc_wdt_ctx); // If WDT was enabled in the user code, then do not change it here.
|
||||
if (!wdt_was_enabled) {
|
||||
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
|
||||
|
@ -1231,6 +1242,9 @@ esp_err_t esp_sleep_disable_bt_wakeup(void)
|
|||
|
||||
esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32C6 // TODO: IDF-5645
|
||||
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
||||
#else
|
||||
if (esp_rom_get_reset_reason(0) != RESET_REASON_CORE_DEEP_SLEEP && !s_light_sleep_wakeup) {
|
||||
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
||||
}
|
||||
|
@ -1278,6 +1292,7 @@ esp_sleep_wakeup_cause_t esp_sleep_get_wakeup_cause(void)
|
|||
} else {
|
||||
return ESP_SLEEP_WAKEUP_UNDEFINED;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
esp_err_t esp_sleep_pd_config(esp_sleep_pd_domain_t domain,
|
||||
|
|
Ładowanie…
Reference in New Issue