Merge branch 'bugfix/aes_unaligned_access' into 'master'

aes: fix unaligned access

Closes IDFGH-5506

See merge request espressif/esp-idf!14659
pull/7497/head
Marius Vikhammer 2021-08-27 01:33:44 +00:00
commit 2206c5315e
5 zmienionych plików z 114 dodań i 113 usunięć

Wyświetl plik

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) CO LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -17,6 +17,7 @@
#include "soc/hwcrypto_reg.h"
#include "soc/dport_access.h"
#include "hal/aes_types.h"
#include <string.h>
#ifdef __cplusplus
extern "C" {
@ -46,10 +47,13 @@ static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
/* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
volatile uint8_t key_bytes_in_hardware = 0;
uint32_t *key_words = (uint32_t *)key;
/* Memcpy to avoid potential unaligned access */
uint32_t key_word;
for (int i = 0; i < key_word_len; i++) {
DPORT_REG_WRITE(AES_KEY_BASE + i * 4, *(key_words + i));
memcpy(&key_word, key + 4 * i, 4);
DPORT_REG_WRITE(AES_KEY_BASE + i * 4, key_word);
key_bytes_in_hardware += 4;
}
return key_bytes_in_hardware;

Wyświetl plik

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) CO LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -15,6 +15,7 @@
#pragma once
#include <stdbool.h>
#include <string.h>
#include "soc/hwcrypto_reg.h"
#include "hal/aes_types.h"
@ -39,16 +40,17 @@ typedef enum {
* @param key Key to be written to the AES hardware
* @param key_word_len Number of words in the key
*
* @return volatile number of bytes written to hardware, used for fault injection check
* @return Number of bytes written to hardware, used for fault injection check
*/
static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
/* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
volatile uint8_t key_in_hardware = 0;
uint32_t *key_words = (uint32_t *)key;
/* Memcpy to avoid potential unaligned access */
uint32_t key_word;
for (int i = 0; i < key_word_len; i++) {
REG_WRITE(AES_KEY_BASE + i * 4, *(key_words + i));
memcpy(&key_word, key + 4 * i, 4);
REG_WRITE(AES_KEY_BASE + i * 4, key_word);
key_in_hardware += 4;
}
return key_in_hardware;
@ -76,22 +78,12 @@ static inline void aes_ll_set_mode(int mode, uint8_t key_bytes)
*/
static inline void aes_ll_write_block(const void *input)
{
const uint32_t *input_words = (const uint32_t *)input;
uint32_t i0, i1, i2, i3;
uint32_t input_word;
/* Storing i0,i1,i2,i3 in registers, not in an array
helps a lot with optimisations at -Os level */
i0 = input_words[0];
REG_WRITE(AES_TEXT_IN_BASE, i0);
i1 = input_words[1];
REG_WRITE(AES_TEXT_IN_BASE + 4, i1);
i2 = input_words[2];
REG_WRITE(AES_TEXT_IN_BASE + 8, i2);
i3 = input_words[3];
REG_WRITE(AES_TEXT_IN_BASE + 12, i3);
for (int i = 0; i < AES_BLOCK_WORDS; i++) {
memcpy(&input_word, (uint8_t*)input + 4 * i, 4);
REG_WRITE(AES_TEXT_IN_BASE + i * 4, input_word);
}
}
/**
@ -101,11 +93,13 @@ static inline void aes_ll_write_block(const void *input)
*/
static inline void aes_ll_read_block(void *output)
{
uint32_t *output_words = (uint32_t *)output;
uint32_t output_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < AES_BLOCK_WORDS; i++) {
output_words[i] = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
output_word = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy( (uint8_t*)output + i * 4, &output_word, sizeof(output_word));
}
}
@ -179,11 +173,13 @@ static inline void aes_ll_set_num_blocks(size_t num_blocks)
*/
static inline void aes_ll_set_iv(const uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
uint32_t iv_word;
for (int i = 0; i < IV_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], iv_words[i]);
/* Memcpy to avoid potential unaligned access */
memcpy(&iv_word, iv + 4 * i, sizeof(iv_word));
REG_WRITE(&reg_addr_buf[i], iv_word);
}
}
@ -192,11 +188,13 @@ static inline void aes_ll_set_iv(const uint8_t *iv)
*/
static inline void aes_ll_read_iv(uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t iv_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < IV_WORDS; i++) {
iv_words[i] = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
iv_word = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(iv + i * 4, &iv_word, sizeof(iv_word));
}
}

Wyświetl plik

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) CO LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -15,6 +15,7 @@
#pragma once
#include <stdbool.h>
#include <string.h>
#include "soc/hwcrypto_reg.h"
#include "hal/aes_types.h"
@ -39,16 +40,17 @@ typedef enum {
* @param key Key to be written to the AES hardware
* @param key_word_len Number of words in the key
*
* @return volatile number of bytes written to hardware, used for fault injection check
* @return Number of bytes written to hardware, used for fault injection check
*/
static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
/* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
volatile uint8_t key_in_hardware = 0;
uint32_t *key_words = (uint32_t *)key;
/* Memcpy to avoid potential unaligned access */
uint32_t key_word;
for (int i = 0; i < key_word_len; i++) {
REG_WRITE(AES_KEY_BASE + i * 4, *(key_words + i));
memcpy(&key_word, key + 4 * i, 4);
REG_WRITE(AES_KEY_BASE + i * 4, key_word);
key_in_hardware += 4;
}
return key_in_hardware;
@ -76,22 +78,12 @@ static inline void aes_ll_set_mode(int mode, uint8_t key_bytes)
*/
static inline void aes_ll_write_block(const void *input)
{
const uint32_t *input_words = (const uint32_t *)input;
uint32_t i0, i1, i2, i3;
uint32_t input_word;
/* Storing i0,i1,i2,i3 in registers, not in an array
helps a lot with optimisations at -Os level */
i0 = input_words[0];
REG_WRITE(AES_TEXT_IN_BASE, i0);
i1 = input_words[1];
REG_WRITE(AES_TEXT_IN_BASE + 4, i1);
i2 = input_words[2];
REG_WRITE(AES_TEXT_IN_BASE + 8, i2);
i3 = input_words[3];
REG_WRITE(AES_TEXT_IN_BASE + 12, i3);
for (int i = 0; i < AES_BLOCK_WORDS; i++) {
memcpy(&input_word, (uint8_t*)input + 4 * i, 4);
REG_WRITE(AES_TEXT_IN_BASE + i * 4, input_word);
}
}
/**
@ -101,11 +93,13 @@ static inline void aes_ll_write_block(const void *input)
*/
static inline void aes_ll_read_block(void *output)
{
uint32_t *output_words = (uint32_t *)output;
uint32_t output_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < AES_BLOCK_WORDS; i++) {
output_words[i] = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
output_word = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy( (uint8_t*)output + i * 4, &output_word, sizeof(output_word));
}
}
@ -179,11 +173,13 @@ static inline void aes_ll_set_num_blocks(size_t num_blocks)
*/
static inline void aes_ll_set_iv(const uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
uint32_t iv_word;
for (int i = 0; i < IV_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], iv_words[i]);
/* Memcpy to avoid potential unaligned access */
memcpy(&iv_word, iv + 4 * i, sizeof(iv_word));
REG_WRITE(&reg_addr_buf[i], iv_word);
}
}
@ -192,11 +188,13 @@ static inline void aes_ll_set_iv(const uint8_t *iv)
*/
static inline void aes_ll_read_iv(uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t iv_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < IV_WORDS; i++) {
iv_words[i] = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
iv_word = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(iv + i * 4, &iv_word, sizeof(iv_word));
}
}

Wyświetl plik

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) CO LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -15,6 +15,7 @@
#pragma once
#include <stdbool.h>
#include <string.h>
#include "soc/hwcrypto_reg.h"
#include "hal/aes_types.h"
@ -46,10 +47,11 @@ static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
/* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
volatile uint8_t key_in_hardware = 0;
uint32_t *key_words = (uint32_t *)key;
/* Memcpy to avoid potential unaligned access */
uint32_t key_word;
for (int i = 0; i < key_word_len; i++) {
REG_WRITE(AES_KEY_BASE + i * 4, *(key_words + i));
memcpy(&key_word, key + 4 * i, 4);
REG_WRITE(AES_KEY_BASE + i * 4, key_word);
key_in_hardware += 4;
}
return key_in_hardware;
@ -77,22 +79,12 @@ static inline void aes_ll_set_mode(int mode, uint8_t key_bytes)
*/
static inline void aes_ll_write_block(const void *input)
{
const uint32_t *input_words = (const uint32_t *)input;
uint32_t i0, i1, i2, i3;
uint32_t input_word;
/* Storing i0,i1,i2,i3 in registers not an array
helps a lot with optimisations at -Os level */
i0 = input_words[0];
REG_WRITE(AES_TEXT_IN_BASE, i0);
i1 = input_words[1];
REG_WRITE(AES_TEXT_IN_BASE + 4, i1);
i2 = input_words[2];
REG_WRITE(AES_TEXT_IN_BASE + 8, i2);
i3 = input_words[3];
REG_WRITE(AES_TEXT_IN_BASE + 12, i3);
for (int i = 0; i < AES_BLOCK_WORDS; i++) {
memcpy(&input_word, (uint8_t*)input + 4 * i, 4);
REG_WRITE(AES_TEXT_IN_BASE + i * 4, input_word);
}
}
/**
@ -102,11 +94,13 @@ static inline void aes_ll_write_block(const void *input)
*/
static inline void aes_ll_read_block(void *output)
{
uint32_t *output_words = (uint32_t *)output;
uint32_t output_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < AES_BLOCK_WORDS; i++) {
output_words[i] = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
output_word = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy( (uint8_t*)output + i * 4, &output_word, sizeof(output_word));
}
}
@ -190,11 +184,13 @@ static inline void aes_ll_set_num_blocks(size_t num_blocks)
*/
static inline void aes_ll_set_iv(const uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
uint32_t iv_word;
for (int i = 0; i < IV_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], iv_words[i]);
/* Memcpy to avoid potential unaligned access */
memcpy(&iv_word, iv + 4 * i, sizeof(iv_word));
REG_WRITE(&reg_addr_buf[i], iv_word);
}
}
@ -203,11 +199,13 @@ static inline void aes_ll_set_iv(const uint8_t *iv)
*/
static inline void aes_ll_read_iv(uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t iv_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < IV_WORDS; i++) {
iv_words[i] = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
iv_word = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(iv + i * 4, &iv_word, sizeof(iv_word));
}
}
@ -247,13 +245,14 @@ static inline void aes_ll_interrupt_clear(void)
*/
static inline void aes_ll_gcm_read_hash(uint8_t *gcm_hash)
{
uint32_t *hash_words = (uint32_t *)gcm_hash;
const size_t REG_WIDTH = sizeof(uint32_t);
uint32_t hash_word;
for (size_t i = 0; i < AES_BLOCK_WORDS; i++) {
hash_words[i] = REG_READ(AES_H_BASE + (i * REG_WIDTH));
hash_word = REG_READ(AES_H_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(gcm_hash + i * 4, &hash_word, sizeof(hash_word));
}
}
/**
@ -277,11 +276,13 @@ static inline void aes_ll_gcm_set_aad_num_blocks(size_t aad_num_blocks)
*/
static inline void aes_ll_gcm_set_j0(const uint8_t *j0)
{
uint32_t *j0_words = (uint32_t *)j0;
uint32_t *reg_addr_buf = (uint32_t *)(AES_J_BASE);
uint32_t j0_word;
for (int i = 0; i < AES_BLOCK_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], j0_words[i]);
/* Memcpy to avoid potential unaligned access */
memcpy(&j0_word, j0 + 4 * i, sizeof(j0_word));
REG_WRITE(&reg_addr_buf[i], j0_word);
}
}
@ -304,11 +305,13 @@ static inline void aes_ll_gcm_set_num_valid_bit(size_t num_valid_bits)
*/
static inline void aes_ll_gcm_read_tag(uint8_t *tag)
{
uint32_t *tag_words = (uint32_t *)tag;
uint32_t tag_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < TAG_WORDS; i++) {
tag_words[i] = REG_READ(AES_T_BASE + (i * REG_WIDTH));
tag_word = REG_READ(AES_T_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(tag + i * 4, &tag_word, sizeof(tag_word));
}
}

Wyświetl plik

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) CO LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -15,6 +15,7 @@
#pragma once
#include <stdbool.h>
#include <string.h>
#include "soc/hwcrypto_reg.h"
#include "hal/aes_types.h"
@ -39,16 +40,17 @@ typedef enum {
* @param key Key to be written to the AES hardware
* @param key_word_len Number of words in the key
*
* @return volatile number of bytes written to hardware, used for fault injection check
* @return Number of bytes written to hardware, used for fault injection check
*/
static inline uint8_t aes_ll_write_key(const uint8_t *key, size_t key_word_len)
{
/* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
volatile uint8_t key_in_hardware = 0;
uint32_t *key_words = (uint32_t *)key;
/* Memcpy to avoid potential unaligned access */
uint32_t key_word;
for (int i = 0; i < key_word_len; i++) {
REG_WRITE(AES_KEY_BASE + i * 4, *(key_words + i));
memcpy(&key_word, key + 4 * i, 4);
REG_WRITE(AES_KEY_BASE + i * 4, key_word);
key_in_hardware += 4;
}
return key_in_hardware;
@ -76,22 +78,12 @@ static inline void aes_ll_set_mode(int mode, uint8_t key_bytes)
*/
static inline void aes_ll_write_block(const void *input)
{
const uint32_t *input_words = (const uint32_t *)input;
uint32_t i0, i1, i2, i3;
uint32_t input_word;
/* Storing i0,i1,i2,i3 in registers not an array
helps a lot with optimisations at -Os level */
i0 = input_words[0];
REG_WRITE(AES_TEXT_IN_BASE, i0);
i1 = input_words[1];
REG_WRITE(AES_TEXT_IN_BASE + 4, i1);
i2 = input_words[2];
REG_WRITE(AES_TEXT_IN_BASE + 8, i2);
i3 = input_words[3];
REG_WRITE(AES_TEXT_IN_BASE + 12, i3);
for (int i = 0; i < AES_BLOCK_WORDS; i++) {
memcpy(&input_word, (uint8_t*)input + 4 * i, 4);
REG_WRITE(AES_TEXT_IN_BASE + i * 4, input_word);
}
}
/**
@ -101,11 +93,13 @@ static inline void aes_ll_write_block(const void *input)
*/
static inline void aes_ll_read_block(void *output)
{
uint32_t *output_words = (uint32_t *)output;
uint32_t output_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < AES_BLOCK_WORDS; i++) {
output_words[i] = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
output_word = REG_READ(AES_TEXT_OUT_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy( (uint8_t*)output + i * 4, &output_word, sizeof(output_word));
}
}
@ -179,11 +173,13 @@ static inline void aes_ll_set_num_blocks(size_t num_blocks)
*/
static inline void aes_ll_set_iv(const uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t *reg_addr_buf = (uint32_t *)(AES_IV_BASE);
uint32_t iv_word;
for (int i = 0; i < IV_WORDS; i++ ) {
REG_WRITE(&reg_addr_buf[i], iv_words[i]);
/* Memcpy to avoid potential unaligned access */
memcpy(&iv_word, iv + 4 * i, sizeof(iv_word));
REG_WRITE(&reg_addr_buf[i], iv_word);
}
}
@ -192,11 +188,13 @@ static inline void aes_ll_set_iv(const uint8_t *iv)
*/
static inline void aes_ll_read_iv(uint8_t *iv)
{
uint32_t *iv_words = (uint32_t *)iv;
uint32_t iv_word;
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < IV_WORDS; i++) {
iv_words[i] = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
iv_word = REG_READ(AES_IV_BASE + (i * REG_WIDTH));
/* Memcpy to avoid potential unaligned access */
memcpy(iv + i * 4, &iv_word, sizeof(iv_word));
}
}