Merge branch 'feature/storage_esp_partition_linux' into 'master'

esp_partition: added missing functions for linux target

See merge request espressif/esp-idf!21762
pull/10546/head
Martin Vychodil 2023-01-13 02:04:54 +08:00
commit 1da27eb6fe
6 zmienionych plików z 607 dodań i 8 usunięć

Wyświetl plik

@ -0,0 +1,10 @@
menu "ESP_PARTITION"
config ESP_PARTITION_ENABLE_STATS
bool "Enable esp_partition statistics gathering"
default n
depends on IDF_TARGET_LINUX
help
This option enables statistics gathering and flash wear simulation. Linux only.
endmenu

Wyświetl plik

@ -13,6 +13,9 @@
#include "unity.h"
#include "unity_fixture.h"
#include "esp_log.h"
const char *TAG = "partition_api_test";
TEST_GROUP(partition_api);
@ -108,6 +111,238 @@ TEST(partition_api, test_partition_ops)
TEST_ASSERT_NOT_NULL(verified_partition);
}
TEST(partition_api, test_partition_mmap)
{
const esp_partition_t *partition_data = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage");
TEST_ASSERT_NOT_NULL(partition_data);
esp_partition_mmap_memory_t memory = ESP_PARTITION_MMAP_DATA;
void *out_ptr = NULL;
esp_partition_mmap_handle_t out_handle = 0;
// no offset, complete length
size_t offset = 0;
size_t size = partition_data->size;
esp_err_t err = esp_partition_mmap(partition_data, offset, size, memory, (const void **) &out_ptr, &out_handle);
TEST_ESP_OK(err);
TEST_ASSERT_NOT_NULL(out_ptr);
esp_partition_munmap(out_handle);
// offset out of partition size
offset = partition_data->size+1;
size = 1;
err = esp_partition_mmap(partition_data, offset, size, memory, (const void **) &out_ptr, &out_handle);
TEST_ASSERT_EQUAL(err,ESP_ERR_INVALID_ARG);
// mapped length beyond partition size
offset = 1;
size = partition_data->size;
err = esp_partition_mmap(partition_data, offset, size, memory, (const void **) &out_ptr, &out_handle);
TEST_ASSERT_EQUAL(err,ESP_ERR_INVALID_SIZE);
}
#define EMULATED_VIRTUAL_SECTOR_COUNT (ESP_PARTITION_EMULATED_FLASH_SIZE / ESP_PARTITION_EMULATED_SECTOR_SIZE)
typedef struct
{
size_t read_ops;
size_t write_ops;
size_t erase_ops;
size_t read_bytes;
size_t write_bytes;
size_t total_time;
size_t sector_erase_count[EMULATED_VIRTUAL_SECTOR_COUNT];
} t_stats;
void print_stats(const t_stats *p_stats)
{
ESP_LOGI(TAG, "read_ops:%06lu write_ops:%06lu erase_ops:%06lu read_bytes:%06lu write_bytes:%06lu total_time:%06lu\n",
p_stats->read_ops,
p_stats->write_ops,
p_stats->erase_ops,
p_stats->read_bytes,
p_stats->write_bytes,
p_stats->total_time);
}
void read_stats(t_stats *p_stats)
{
p_stats->read_ops = esp_partition_get_read_ops();
p_stats->write_ops = esp_partition_get_write_ops();
p_stats->erase_ops = esp_partition_get_erase_ops();
p_stats->read_bytes = esp_partition_get_read_bytes();
p_stats->write_bytes = esp_partition_get_write_bytes();
p_stats->total_time = esp_partition_get_total_time();
for(size_t i = 0; i < EMULATED_VIRTUAL_SECTOR_COUNT; i++)
p_stats->sector_erase_count[i] = esp_partition_get_sector_erase_count(i);
}
// evaluates if final stats differ from initial stats by expected difference stats.
// if there is no need to evaluate some stats, set respective expeted difference stats members to SIZE_MAX
bool evaluate_stats(const t_stats *p_initial_stats, const t_stats *p_final_stats, const t_stats *p_expected_difference_stats)
{
if(p_expected_difference_stats->read_ops != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->read_ops + p_expected_difference_stats->read_ops, p_final_stats->read_ops);
if(p_expected_difference_stats->write_ops != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->write_ops + p_expected_difference_stats->write_ops, p_final_stats->write_ops);
if(p_expected_difference_stats->erase_ops != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->erase_ops + p_expected_difference_stats->erase_ops, p_final_stats->erase_ops);
if(p_expected_difference_stats->read_bytes != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->read_bytes + p_expected_difference_stats->read_bytes, p_final_stats->read_bytes);
if(p_expected_difference_stats->write_bytes != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->write_bytes + p_expected_difference_stats->write_bytes, p_final_stats->write_bytes);
if(p_expected_difference_stats->total_time != SIZE_MAX)
TEST_ASSERT_EQUAL(p_initial_stats->total_time + p_expected_difference_stats->total_time, p_final_stats->total_time);
for(size_t i = 0; i < EMULATED_VIRTUAL_SECTOR_COUNT; i++)
{
if(p_expected_difference_stats->sector_erase_count[i] != SIZE_MAX)
{
size_t expected_value = p_initial_stats->sector_erase_count[i] + p_expected_difference_stats->sector_erase_count[i];
size_t final_value = p_final_stats->sector_erase_count[i];
TEST_ASSERT_EQUAL(expected_value, final_value);
}
}
return true;
}
TEST(partition_api, test_partition_stats)
{
// get storage partition
const esp_partition_t *partition_data = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage");
TEST_ASSERT_NOT_NULL(partition_data);
t_stats initial_stats;
t_stats final_stats;
t_stats zero_stats = {0};
// get actual statistics
read_stats(&initial_stats);
// prepare buffer for r/w
size_t size = partition_data->size;
size_t part_offset = partition_data->address; // this is offset of partition data from flash beginning
void *test_data_ptr = malloc(size);
TEST_ASSERT_NOT_NULL(test_data_ptr);
// do some writes
memset(test_data_ptr, 0xff, size);
esp_err_t err = esp_partition_write(partition_data, 0, test_data_ptr, size);
TEST_ESP_OK(err);
// do some reads
err = esp_partition_read(partition_data , 0, test_data_ptr, size);
TEST_ESP_OK(err);
// do erase
err = esp_partition_erase_range(partition_data, 0, size);
TEST_ESP_OK(err);
// get actual statistics
read_stats(&final_stats);
// evaluate expected results
// erase operations are per virtual sectors touched
// erase ops size / sector + (part_offset % sector + size % sector) / sector + 1 if ((part_offset % sector + size % sector) % sector > 0)
size_t non_aligned_portions = (part_offset % ESP_PARTITION_EMULATED_SECTOR_SIZE) + (size % ESP_PARTITION_EMULATED_SECTOR_SIZE);
size_t erase_ops = size / ESP_PARTITION_EMULATED_SECTOR_SIZE;
erase_ops += non_aligned_portions / ESP_PARTITION_EMULATED_SECTOR_SIZE;
if((non_aligned_portions % ESP_PARTITION_EMULATED_SECTOR_SIZE) > 0)
erase_ops += 1;
t_stats expected_difference_stats = {
.read_ops = 1,
.write_ops = 1,
.erase_ops = erase_ops,
.read_bytes = size,
.write_bytes = size,
.total_time = SIZE_MAX
};
for (size_t i = 0; i < EMULATED_VIRTUAL_SECTOR_COUNT; i++)
expected_difference_stats.sector_erase_count[i] = SIZE_MAX;
evaluate_stats(&initial_stats, &final_stats, &expected_difference_stats);
// clear statistics
esp_partition_clear_stats();
read_stats(&final_stats);
// evaluate zero statistics
evaluate_stats(&zero_stats, &final_stats, &zero_stats);
free(test_data_ptr);
}
TEST(partition_api, test_partition_wear_emulation)
{
const esp_partition_t *partition_data = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_ANY, "storage");
TEST_ASSERT_NOT_NULL(partition_data);
// no offset, map whole partition
size_t offset = 0;
size_t size = partition_data->size;
// prepare test data block
void *test_data_ptr = malloc(size);
TEST_ASSERT_NOT_NULL(test_data_ptr);
memset(test_data_ptr, 0xff, size);
// --- wear off ---
// ensure wear emulation is off
esp_partition_fail_after(SIZE_MAX);
// erase partition data
esp_err_t err = esp_partition_erase_range(partition_data, offset, size);
TEST_ESP_OK(err);
// write data - should pass
err = esp_partition_write(partition_data, offset, test_data_ptr, size);
TEST_ESP_OK(err);
// erase partition data
err = esp_partition_erase_range(partition_data, offset, size);
TEST_ESP_OK(err);
// --- wear on, write ---
// ensure wear emulation is on, below the limit for size
// esp_partition_write consumes one wear cycle per 4 bytes written
esp_partition_fail_after(size / 4 - 1);
// write data - should fail
err = esp_partition_write(partition_data, offset, test_data_ptr, size);
TEST_ASSERT_EQUAL(ESP_FAIL, err);
// --- wear on, erase has just enough wear cycles available---
// ensure wear emulation is on, at the limit for size
// esp_partition_erase_range consumes one wear cycle per one virtual sector erased
esp_partition_fail_after(size / ESP_PARTITION_EMULATED_SECTOR_SIZE);
// write data - should be ok
err = esp_partition_erase_range(partition_data, offset, size);
TEST_ASSERT_EQUAL(ESP_OK, err);
// --- wear on, erase has one cycle less than required---
// ensure wear emulation is on, below the limit for size
// esp_partition_erase_range consumes one wear cycle per one virtual sector erased
esp_partition_fail_after(size / ESP_PARTITION_EMULATED_SECTOR_SIZE - 1);
// write data - should fail
err = esp_partition_erase_range(partition_data, offset, size);
TEST_ASSERT_EQUAL(ESP_FAIL, err);
// ---cleanup ---
// disable wear emulation
esp_partition_fail_after(SIZE_MAX);
free(test_data_ptr);
}
TEST_GROUP_RUNNER(partition_api)
{
RUN_TEST_CASE(partition_api, test_partition_find_basic);
@ -115,6 +350,9 @@ TEST_GROUP_RUNNER(partition_api)
RUN_TEST_CASE(partition_api, test_partition_find_data);
RUN_TEST_CASE(partition_api, test_partition_find_first);
RUN_TEST_CASE(partition_api, test_partition_ops);
RUN_TEST_CASE(partition_api, test_partition_mmap);
RUN_TEST_CASE(partition_api, test_partition_stats);
RUN_TEST_CASE(partition_api, test_partition_wear_emulation);
}
static void run_all_tests(void)

Wyświetl plik

@ -6,3 +6,4 @@ CONFIG_PARTITION_TABLE_CUSTOM=y
CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partition_table.csv"
CONFIG_ESPTOOLPY_FLASHSIZE="4MB"
CONFIG_ESPTOOLPY_FLASHSIZE_4MB=y
CONFIG_ESP_PARTITION_ENABLE_STATS=y

Wyświetl plik

@ -7,6 +7,7 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
#ifdef __cplusplus
@ -22,6 +23,9 @@ extern "C" {
/** @brief emulated sector size for the partition API on Linux */
#define ESP_PARTITION_EMULATED_SECTOR_SIZE 0x1000
/** @brief emulated whole flash size for the partition API on Linux */
#define ESP_PARTITION_EMULATED_FLASH_SIZE 0x400000 //4MB fixed
/**
* @brief Partition type to string conversion routine
*
@ -29,7 +33,7 @@ extern "C" {
*
* @return string equivalent of given partition type or "unknown" on mismatch
*/
const char* esp_partition_type_to_str(const uint32_t type);
const char *esp_partition_type_to_str(const uint32_t type);
/**
* @brief Partition subtype to string conversion routine
@ -90,6 +94,105 @@ esp_err_t esp_partition_file_mmap(const uint8_t **part_desc_addr_start);
*/
esp_err_t esp_partition_file_munmap(void);
/**
* Functions for host tests
*/
/**
* @brief Clears statistics gathered by emulated partition read/write/erase operations
*
*/
void esp_partition_clear_stats();
/**
* @brief Returns number of read operations called
*
* Function returns number of calls to the function esp_partition_read
*
* @return
* - number of calls to esp_partition_read since recent esp_partition_clear_stats
*/
size_t esp_partition_get_read_ops();
/**
* @brief Returns number of write operations called
*
* Function returns number of calls to the function esp_partition_write
*
* @return
* - number of calls to esp_partition_write since recent esp_partition_clear_stats
*/
size_t esp_partition_get_write_ops();
/**
* @brief Returns number of erase operations performed on behalf of calls to esp_partition_erase_range
*
* Function returns accumulated number of sectors erased on behalf of esp_partition_erase_range
*
* @return
* - total number of emulated sector erase operations on behalf of esp_partition_erase_range since recent esp_partition_clear_stats
*/
size_t esp_partition_get_erase_ops();
/**
* @brief Returns total number of bytes read on behalf of esp_partition_read
*
* Function returns number of bytes read by esp_partition_read
*
* @return
* - total number of bytes read on behalf of esp_partition_read since recent esp_partition_clear_stats
*/
size_t esp_partition_get_read_bytes();
/**
* @brief Returns total number of bytes written on behalf of esp_partition_write
*
* Function returns number of bytes written by esp_partition_write
*
* @return
* - total number of bytes written on behalf of esp_partition_write since recent esp_partition_clear_stats
*/
size_t esp_partition_get_write_bytes();
/**
* @brief Returns estimated total time spent on partition operations.
*
* Function returns estimated total time spent in esp_partition_read,
* esp_partition_write and esp_partition_erase_range operations.
*
* @return
* - estimated total time spent in read/write/erase operations in miliseconds
*/
size_t esp_partition_get_total_time();
/**
* @brief Initializes emulation of failure caused by wear on behalf of write/erase operations
*
* Function initializes down counter emulating remaining write / erase cycles.
* Once this counter reaches 0, emulation of all subsequent write / erase operations fails
* Initial state of down counter is disabled.
*
* @param[in] count Number of remaining write / erase cycles before failure. Call with SIZE_MAX to disable simulation of flash wear.
*
*/
void esp_partition_fail_after(size_t count);
/**
* @brief Returns count of erase operations performed on virtual emulated sector
*
* Function returns number of erase operatinos performed on virtual sector specified by the parameter sector.
* The esp_parttion mapped address space is virtually split into sectors of the size ESP_PARTITION_EMULATED_SECTOR_SIZE.
* Calls to the esp_partition_erase_range are impacting one or multiple virtual sectors, for each of them, the respective
* count is incremented.
*
* @param[in] sector Virtual sector number to return erase count for
*
* @return
* - count of erase operations performed on virtual emulated sector
*
*/
size_t esp_partition_get_sector_erase_count(size_t sector);
#ifdef __cplusplus
}
#endif

Wyświetl plik

@ -20,7 +20,36 @@
static const char *TAG = "linux_spiflash";
static void *s_spiflash_mem_file_buf = NULL;
static uint32_t s_spiflash_mem_file_size = 0x400000; //4MB fixed
static const esp_partition_mmap_handle_t s_default_partition_mmap_handle = 0;
#ifdef CONFIG_ESP_PARTITION_ENABLE_STATS
// variables holding stats and controlling wear emulation
size_t s_esp_partition_stat_read_ops = 0;
size_t s_esp_partition_stat_write_ops = 0;
size_t s_esp_partition_stat_read_bytes = 0;
size_t s_esp_partition_stat_write_bytes = 0;
size_t s_esp_partition_stat_erase_ops = 0;
size_t s_esp_partition_stat_total_time = 0;
size_t s_esp_partition_emulated_flash_life = SIZE_MAX;
// tracking erase count individually for each emulated sector
size_t s_esp_partition_stat_sector_erase_count[ESP_PARTITION_EMULATED_FLASH_SIZE / ESP_PARTITION_EMULATED_SECTOR_SIZE] = {0};
// forward declaration of hooks
static void esp_partition_hook_read(const void *srcAddr, const size_t size);
static bool esp_partition_hook_write(const void *dstAddr, const size_t size);
static bool esp_partition_hook_erase(const void *dstAddr, const size_t size);
// redirect hooks to functions
#define ESP_PARTITION_HOOK_READ(srcAddr, size) esp_partition_hook_read(srcAddr, size)
#define ESP_PARTITION_HOOK_WRITE(dstAddr, size) esp_partition_hook_write(dstAddr, size)
#define ESP_PARTITION_HOOK_ERASE(dstAddr, size) esp_partition_hook_erase(dstAddr, size)
#else
// redirect hooks to "do nothing code"
#define ESP_PARTITION_HOOK_READ(srcAddr, size)
#define ESP_PARTITION_HOOK_WRITE(dstAddr, size) true
#define ESP_PARTITION_HOOK_ERASE(dstAddr, size) true
#endif
const char *esp_partition_type_to_str(const uint32_t type)
{
@ -66,21 +95,21 @@ esp_err_t esp_partition_file_mmap(const uint8_t **part_desc_addr_start)
return ESP_ERR_NOT_FINISHED;
}
if (ftruncate(spiflash_mem_file_fd, s_spiflash_mem_file_size) != 0) {
if (ftruncate(spiflash_mem_file_fd, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) {
ESP_LOGE(TAG, "Failed to set size of SPI FLASH memory emulation file %s: %s", temp_spiflash_mem_file_name, strerror(errno));
return ESP_ERR_INVALID_SIZE;
}
ESP_LOGV(TAG, "SPIFLASH memory emulation file created: %s (size: %d B)", temp_spiflash_mem_file_name, s_spiflash_mem_file_size);
ESP_LOGV(TAG, "SPIFLASH memory emulation file created: %s (size: %d B)", temp_spiflash_mem_file_name, ESP_PARTITION_EMULATED_FLASH_SIZE);
//create memory-mapping for the partitions holder file
if ((s_spiflash_mem_file_buf = mmap(NULL, s_spiflash_mem_file_size, PROT_READ | PROT_WRITE, MAP_SHARED, spiflash_mem_file_fd, 0)) == MAP_FAILED) {
if ((s_spiflash_mem_file_buf = mmap(NULL, ESP_PARTITION_EMULATED_FLASH_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, spiflash_mem_file_fd, 0)) == MAP_FAILED) {
ESP_LOGE(TAG, "Failed to mmap() SPI FLASH memory emulation file: %s", strerror(errno));
return ESP_ERR_NO_MEM;
}
//initialize whole range with bit-1 (NOR FLASH default)
memset(s_spiflash_mem_file_buf, 0xFF, s_spiflash_mem_file_size);
memset(s_spiflash_mem_file_buf, 0xFF, ESP_PARTITION_EMULATED_FLASH_SIZE);
//upload partition table to the mmap file at real offset as in SPIFLASH
const char *partition_table_file_name = "build/partition_table/partition-table.bin";
@ -152,11 +181,11 @@ esp_err_t esp_partition_file_munmap()
if (s_spiflash_mem_file_buf == NULL) {
return ESP_ERR_NO_MEM;
}
if (s_spiflash_mem_file_size == 0) {
if (ESP_PARTITION_EMULATED_FLASH_SIZE == 0) {
return ESP_ERR_INVALID_SIZE;
}
if (munmap(s_spiflash_mem_file_buf, s_spiflash_mem_file_size) != 0) {
if (munmap(s_spiflash_mem_file_buf, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) {
ESP_LOGE(TAG, "Failed to munmap() SPI FLASH memory emulation file: %s", strerror(errno));
return ESP_ERR_INVALID_RESPONSE;
}
@ -188,6 +217,11 @@ esp_err_t esp_partition_write(const esp_partition_t *partition, size_t dst_offse
void *dst_addr = s_spiflash_mem_file_buf + partition->address + dst_offset;
ESP_LOGV(TAG, "esp_partition_write(): partition=%s dst_offset=%zu src=%p size=%zu (real dst address: %p)", partition->label, dst_offset, src, size, dst_addr);
// hook gathers statistics and can emulate limited number of write cycles
if (!ESP_PARTITION_HOOK_WRITE(dst_addr, size)) {
return ESP_FAIL;
}
//read the contents first, AND with the write buffer (to emulate real NOR FLASH behavior)
memcpy(write_buf, dst_addr, size);
for (size_t x = 0; x < size; x++) {
@ -219,6 +253,8 @@ esp_err_t esp_partition_read(const esp_partition_t *partition, size_t src_offset
memcpy(dst, src_addr, size);
ESP_PARTITION_HOOK_READ(src_addr, size); // statistics
return ESP_OK;
}
@ -248,8 +284,216 @@ esp_err_t esp_partition_erase_range(const esp_partition_t *partition, size_t off
void *target_addr = s_spiflash_mem_file_buf + partition->address + offset;
ESP_LOGV(TAG, "esp_partition_erase_range(): partition=%s offset=%zu size=%zu (real target address: %p)", partition->label, offset, size, target_addr);
// hook gathers statistics and can emulate limited number of write/erase cycles
if (!ESP_PARTITION_HOOK_ERASE(target_addr, size)) {
return ESP_FAIL;
}
//set all bits to 1 (NOR FLASH default)
memset(target_addr, 0xFF, size);
return ESP_OK;
}
/*
* Exposes direct pointer to the memory mapped file created by esp_partition_file_mmap
* No address alignment is performed
* Default handle is always returned
* Returns:
* ESP_ERR_INVALID_ARG - offset exceeds size of partition
* ESP_ERR_INVALID_SIZE - address range defined by offset + size is beyond the size of partition
* ESP_ERR_NOT_SUPPORTED - flash_chip of partition is not NULL
* ESP_OK - calculated out parameters hold pointer to the requested memory area and default handle respectively
*/
esp_err_t esp_partition_mmap(const esp_partition_t *partition, size_t offset, size_t size,
esp_partition_mmap_memory_t memory,
const void **out_ptr, esp_partition_mmap_handle_t *out_handle)
{
ESP_LOGV(TAG, "esp_partition_mmap(): partition=%s offset=%zu size=%zu", partition->label, offset, size);
assert(partition != NULL);
if (offset > partition->size) {
return ESP_ERR_INVALID_ARG;
}
if (offset + size > partition->size) {
return ESP_ERR_INVALID_SIZE;
}
if (partition->flash_chip != NULL) {
return ESP_ERR_NOT_SUPPORTED;
}
// required starting address in flash aka offset from the flash beginning
size_t req_flash_addr = (size_t)(partition->address) + offset;
esp_err_t rc = ESP_OK;
// check if memory mapped file is already present, if not, map it now
if (s_spiflash_mem_file_buf == NULL) {
ESP_LOGE(TAG, "esp_partition_mmap(): in esp_partition_file_mmap");
uint8_t *part_desc_addr_start = NULL;
rc = esp_partition_file_mmap((const uint8_t **) &part_desc_addr_start);
}
// adjust memory mapped pointer to the required offset
if (rc == ESP_OK) {
*out_ptr = (void *) (s_spiflash_mem_file_buf + req_flash_addr);
*out_handle = s_default_partition_mmap_handle;
} else {
*out_ptr = (void *) NULL;
*out_handle = 0;
}
return rc;
}
// Intentionally does nothing.
void esp_partition_munmap(esp_partition_mmap_handle_t handle)
{
;
}
#ifdef CONFIG_ESP_PARTITION_ENABLE_STATS
// timing data for ESP8266, 160MHz CPU frequency, 80MHz flash requency
// all values in microseconds
// values are for block sizes starting at 4 bytes and going up to 4096 bytes
static size_t s_esp_partition_stat_read_times[] = {7, 5, 6, 7, 11, 18, 32, 60, 118, 231, 459};
static size_t s_esp_partition_stat_write_times[] = {19, 23, 35, 57, 106, 205, 417, 814, 1622, 3200, 6367};
static size_t s_esp_partition_stat_block_erase_time = 37142;
static size_t esp_partition_stat_time_interpolate(uint32_t bytes, size_t *lut)
{
const int lut_size = sizeof(s_esp_partition_stat_read_times) / sizeof(s_esp_partition_stat_read_times[0]);
int lz = __builtin_clz(bytes / 4);
int log_size = 32 - lz;
size_t x2 = 1 << (log_size + 2);
size_t upper_index = (log_size < lut_size - 1) ? log_size : lut_size - 1;
size_t y2 = lut[upper_index];
size_t x1 = 1 << (log_size + 1);
size_t y1 = lut[log_size - 1];
return (bytes - x1) * (y2 - y1) / (x2 - x1) + y1;
}
// Registers read access statistics of emulated SPI FLASH device (Linux host)
// Ffunction increases nmuber of read operations, accumulates number of read bytes
// and accumulates emulated read operation time (size dependent)
static void esp_partition_hook_read(const void *srcAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_read()");
// stats
++s_esp_partition_stat_read_ops;
s_esp_partition_stat_read_bytes += size;
s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_read_times);
}
// Registers write access statistics of emulated SPI FLASH device (Linux host)
// If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by
// decrementing the s_esp_partition_emulated_life for each 4 bytes written
// If zero threshold is reached, false is returned.
// Else the function increases nmuber of write operations, accumulates number
// of bytes written and accumulates emulated write operation time (size dependent) and returns true.
static bool esp_partition_hook_write(const void *dstAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_write()");
// wear emulation
for (size_t i = 0; i < size / 4; ++i) {
if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) {
return false;
}
}
// stats
++s_esp_partition_stat_write_ops;
s_esp_partition_stat_write_bytes += size;
s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_write_times);
return true;
}
// Registers erase access statistics of emulated SPI FLASH device (Linux host)
// If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by
// decrementing the s_esp_partition_emulated_life for each erased virtual sector.
// If zero threshold is reached, false is returned.
// Else, for statistics purpose, the impacted virtual sectors are identified based on
// ESP_PARTITION_EMULATED_SECTOR_SIZE and their respective counts of erase operations are incremented
// Total number of erase operations is increased by the number of impacted virtual sectors
static bool esp_partition_hook_erase(const void *dstAddr, const size_t size)
{
ESP_LOGV(TAG, "esp_partition_hook_erase()");
if (size == 0) {
return true;
}
// cycle over virtual sectors
ptrdiff_t offset = dstAddr - s_spiflash_mem_file_buf;
size_t first_sector_idx = offset / ESP_PARTITION_EMULATED_SECTOR_SIZE;
size_t last_sector_idx = (offset + size - 1) / ESP_PARTITION_EMULATED_SECTOR_SIZE;
size_t sector_count = 1 + last_sector_idx - first_sector_idx;
for (size_t sector_index = first_sector_idx; sector_index < first_sector_idx + sector_count; sector_index++) {
// wear emulation
if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) {
return false;
}
// stats
++s_esp_partition_stat_erase_ops;
s_esp_partition_stat_sector_erase_count[sector_index]++;
s_esp_partition_stat_total_time += s_esp_partition_stat_block_erase_time;
}
return true;
}
void esp_partition_clear_stats()
{
s_esp_partition_stat_read_bytes = 0;
s_esp_partition_stat_write_bytes = 0;
s_esp_partition_stat_erase_ops = 0;
s_esp_partition_stat_read_ops = 0;
s_esp_partition_stat_write_ops = 0;
s_esp_partition_stat_total_time = 0;
memset(s_esp_partition_stat_sector_erase_count, 0, sizeof(s_esp_partition_stat_sector_erase_count));
}
size_t esp_partition_get_read_ops()
{
return s_esp_partition_stat_read_ops;
}
size_t esp_partition_get_write_ops()
{
return s_esp_partition_stat_write_ops;
}
size_t esp_partition_get_erase_ops()
{
return s_esp_partition_stat_erase_ops;
}
size_t esp_partition_get_read_bytes()
{
return s_esp_partition_stat_read_bytes;
}
size_t esp_partition_get_write_bytes()
{
return s_esp_partition_stat_write_bytes;
}
size_t esp_partition_get_total_time()
{
return s_esp_partition_stat_total_time;
}
void esp_partition_fail_after(size_t count)
{
s_esp_partition_emulated_flash_life = count;
}
size_t esp_partition_get_sector_erase_count(size_t sector)
{
return s_esp_partition_stat_sector_erase_count[sector];
}
#endif

Wyświetl plik

@ -4,7 +4,10 @@
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stdlib.h>
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#include <string.h>
#include "esp_attr.h"