Merge branch 'bugfix/unsupport_partial_receive_on_esp32' into 'master'

fix(rmt): Fix the RMT RX filter not working correctly on esp32/s2

Closes IDFGH-12500

See merge request espressif/esp-idf!29951
pull/13660/head
morris 2024-04-07 17:50:09 +08:00
commit 15f356bf55
8 zmienionych plików z 149 dodań i 16 usunięć

Wyświetl plik

@ -85,7 +85,7 @@ esp_err_t mcpwm_capture_timer_disable(mcpwm_cap_timer_handle_t cap_timer);
esp_err_t mcpwm_capture_timer_start(mcpwm_cap_timer_handle_t cap_timer);
/**
* @brief Start MCPWM capture timer
* @brief Stop MCPWM capture timer
*
* @param[in] cap_timer MCPWM capture timer, allocated by `mcpwm_new_capture_timer()`
* @return

Wyświetl plik

@ -19,7 +19,6 @@
#include "soc/rmt_periph.h"
#include "hal/rmt_ll.h"
#include "driver/gpio.h"
#include "esp_clk_tree.h"
#include "esp_private/periph_ctrl.h"
static const char *TAG = "rmt";

Wyświetl plik

@ -21,6 +21,7 @@
#include "hal/cache_ll.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "esp_clk_tree.h"
#include "esp_pm.h"
#include "esp_attr.h"
#include "esp_private/gdma.h"
@ -190,6 +191,7 @@ typedef struct {
struct rmt_rx_channel_t {
rmt_channel_t base; // channel base class
uint32_t filter_clock_resolution_hz; // filter clock resolution, in Hz
size_t mem_off; // starting offset to fetch the symbols in RMT-MEM
size_t ping_pong_symbols; // ping-pong size (half of the RMT channel memory)
rmt_rx_done_callback_t on_recv_done; // callback, invoked on receive done

Wyświetl plik

@ -265,6 +265,13 @@ esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_
ESP_LOGW(TAG, "channel resolution loss, real=%"PRIu32, rx_channel->base.resolution_hz);
}
rx_channel->filter_clock_resolution_hz = group->resolution_hz;
// On esp32 and esp32s2, the counting clock used by the RX filter always comes from APB clock
// no matter what the clock source is used by the RMT channel as the "core" clock
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
esp_clk_tree_src_get_freq_hz(SOC_MOD_CLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &rx_channel->filter_clock_resolution_hz);
#endif
rmt_ll_rx_set_mem_blocks(hal->regs, channel_id, rx_channel->base.mem_block_num);
rmt_ll_rx_set_mem_owner(hal->regs, channel_id, RMT_LL_MEM_OWNER_HW);
#if SOC_RMT_SUPPORT_RX_PINGPONG
@ -286,12 +293,12 @@ esp_err_t rmt_new_rx_channel(const rmt_rx_channel_config_t *config, rmt_channel_
.pull_up_en = true,
.pin_bit_mask = BIT64(config->gpio_num),
};
// gpio_config also connects the IO_MUX to the GPIO matrix
ESP_GOTO_ON_ERROR(gpio_config(&gpio_conf), err, TAG, "config GPIO failed");
rx_channel->base.gpio_num = config->gpio_num;
esp_rom_gpio_connect_in_signal(config->gpio_num,
rmt_periph_signals.groups[group_id].channels[channel_id + RMT_RX_CHANNEL_OFFSET_IN_GROUP].rx_sig,
config->flags.invert_in);
gpio_func_sel(config->gpio_num, PIN_FUNC_GPIO);
// initialize other members of rx channel
portMUX_INITIALIZE(&rx_channel->base.spinlock);
@ -355,6 +362,9 @@ esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_
{
ESP_RETURN_ON_FALSE_ISR(channel && buffer && buffer_size && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
ESP_RETURN_ON_FALSE_ISR(channel->direction == RMT_CHANNEL_DIRECTION_RX, ESP_ERR_INVALID_ARG, TAG, "invalid channel direction");
#if !SOC_RMT_SUPPORT_RX_PINGPONG
ESP_RETURN_ON_FALSE_ISR(!config->flags.en_partial_rx, ESP_ERR_NOT_SUPPORTED, TAG, "partial receive not supported");
#endif
rmt_rx_channel_t *rx_chan = __containerof(channel, rmt_rx_channel_t, base);
size_t per_dma_block_size = 0;
size_t last_dma_block_size = 0;
@ -380,7 +390,7 @@ esp_err_t rmt_receive(rmt_channel_handle_t channel, void *buffer, size_t buffer_
rmt_hal_context_t *hal = &group->hal;
int channel_id = channel->channel_id;
uint32_t filter_reg_value = ((uint64_t)group->resolution_hz * config->signal_range_min_ns) / 1000000000UL;
uint32_t filter_reg_value = ((uint64_t)rx_chan->filter_clock_resolution_hz * config->signal_range_min_ns) / 1000000000UL;
uint32_t idle_reg_value = ((uint64_t)channel->resolution_hz * config->signal_range_max_ns) / 1000000000UL;
ESP_RETURN_ON_FALSE_ISR(filter_reg_value <= RMT_LL_MAX_FILTER_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_min_ns too big");
ESP_RETURN_ON_FALSE_ISR(idle_reg_value <= RMT_LL_MAX_IDLE_VALUE, ESP_ERR_INVALID_ARG, TAG, "signal_range_max_ns too big");

Wyświetl plik

@ -355,7 +355,6 @@ esp_err_t rmt_new_tx_channel(const rmt_tx_channel_config_t *config, rmt_channel_
esp_rom_gpio_connect_out_signal(config->gpio_num,
rmt_periph_signals.groups[group_id].channels[channel_id + RMT_TX_CHANNEL_OFFSET_IN_GROUP].tx_sig,
config->flags.invert_out, false);
gpio_func_sel(config->gpio_num, PIN_FUNC_GPIO);
tx_channel->base.gpio_num = config->gpio_num;
portMUX_INITIALIZE(&tx_channel->base.spinlock);

Wyświetl plik

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -25,13 +25,13 @@
typedef struct {
TaskHandle_t task_to_notify;
size_t received_symbol_num;
} test_nec_rx_user_data_t;
} test_rx_user_data_t;
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_rx_done_callback(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
BaseType_t high_task_wakeup = pdFALSE;
test_nec_rx_user_data_t *test_user_data = (test_nec_rx_user_data_t *)user_data;
test_rx_user_data_t *test_user_data = (test_rx_user_data_t *)user_data;
rmt_symbol_word_t *remote_codes = edata->received_symbols;
esp_rom_printf("%u symbols decoded:\r\n", edata->num_symbols);
for (size_t i = 0; i < edata->num_symbols; i++) {
@ -64,7 +64,7 @@ static void test_rmt_rx_nec_carrier(size_t mem_block_symbols, bool with_dma, rmt
rmt_rx_event_callbacks_t cbs = {
.on_recv_done = test_rmt_rx_done_callback,
};
test_nec_rx_user_data_t test_user_data = {
test_rx_user_data_t test_user_data = {
.task_to_notify = xTaskGetCurrentTaskHandle(),
};
TEST_ESP_OK(rmt_rx_register_event_callbacks(rx_channel, &cbs, &test_user_data));
@ -216,11 +216,6 @@ static void pwm_bit_bang(int gpio_num)
}
}
typedef struct {
TaskHandle_t task_to_notify;
size_t received_symbol_num;
} test_rx_user_data_t;
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_partial_receive_done(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
@ -307,3 +302,131 @@ TEST_CASE("rmt rx long frame partially", "[rmt]")
#endif
}
#endif // SOC_RMT_SUPPORT_RX_PINGPONG
TEST_RMT_CALLBACK_ATTR
static bool test_rmt_received_done(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *edata, void *user_data)
{
BaseType_t high_task_wakeup = pdFALSE;
test_rx_user_data_t *test_user_data = (test_rx_user_data_t *)user_data;
test_user_data->received_symbol_num += edata->num_symbols;
// when receive done, notify the task to check the received data
if (edata->flags.is_last) {
vTaskNotifyGiveFromISR(test_user_data->task_to_notify, &high_task_wakeup);
}
return high_task_wakeup == pdTRUE;
}
static void test_rmt_receive_filter(rmt_clock_source_t clk_src)
{
uint32_t const test_rx_buffer_symbols = 32;
rmt_symbol_word_t *receive_user_buf = heap_caps_aligned_calloc(64, test_rx_buffer_symbols, sizeof(rmt_symbol_word_t),
MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
TEST_ASSERT_NOT_NULL(receive_user_buf);
rmt_rx_channel_config_t rx_channel_cfg = {
.clk_src = clk_src,
.resolution_hz = 1000000, // 1MHz, 1 tick = 1us
.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL,
.gpio_num = TEST_RMT_GPIO_NUM_A,
.flags.io_loop_back = true, // the GPIO will act like a loopback
};
printf("install rx channel\r\n");
rmt_channel_handle_t rx_channel = NULL;
TEST_ESP_OK(rmt_new_rx_channel(&rx_channel_cfg, &rx_channel));
// initialize the GPIO level to low
TEST_ESP_OK(gpio_set_level(TEST_RMT_GPIO_NUM_A, 0));
printf("register rx event callbacks\r\n");
rmt_rx_event_callbacks_t cbs = {
.on_recv_done = test_rmt_received_done,
};
test_rx_user_data_t test_user_data = {
.task_to_notify = xTaskGetCurrentTaskHandle(),
.received_symbol_num = 0,
};
TEST_ESP_OK(rmt_rx_register_event_callbacks(rx_channel, &cbs, &test_user_data));
// use TX channel to simulate the input signal
rmt_tx_channel_config_t tx_channel_cfg = {
.clk_src = clk_src,
.resolution_hz = 1000000, // 1MHz, 1 tick = 1us
.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL,
.trans_queue_depth = 4,
.gpio_num = TEST_RMT_GPIO_NUM_A,
.flags.io_loop_back = true, // TX channel and RX channel will bounded to the same GPIO
};
printf("install tx channel\r\n");
rmt_channel_handle_t tx_channel = NULL;
TEST_ESP_OK(rmt_new_tx_channel(&tx_channel_cfg, &tx_channel));
printf("install a simple copy encoder\r\n");
rmt_encoder_handle_t copy_encoder = NULL;
rmt_copy_encoder_config_t encoder_cfg = {};
TEST_ESP_OK(rmt_new_copy_encoder(&encoder_cfg, &copy_encoder));
rmt_transmit_config_t transmit_config = {
.loop_count = 0, // no loop
};
printf("enable tx channel\r\n");
TEST_ESP_OK(rmt_enable(tx_channel));
printf("enable rx channel\r\n");
TEST_ESP_OK(rmt_enable(rx_channel));
rmt_receive_config_t rx_config = {
.signal_range_min_ns = 3000, // filter out the pulses shorter than 3us
.signal_range_max_ns = 12000000,
};
// ready to receive
TEST_ESP_OK(rmt_receive(rx_channel, receive_user_buf, test_rx_buffer_symbols * sizeof(rmt_symbol_word_t), &rx_config));
// generate short pulse of width 2us, should be filtered out
printf("send a short pulse\r\n");
rmt_symbol_word_t short_pulse = {
.level0 = 1,
.duration0 = 2, // pulse width 2us
.level1 = 0,
.duration1 = 1,
};
TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &short_pulse, sizeof(short_pulse), &transmit_config));
TEST_ASSERT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
printf("received %zu symbols\r\n", test_user_data.received_symbol_num);
TEST_ASSERT_EQUAL(0, test_user_data.received_symbol_num);
printf("send a long pulse\r\n");
// generate long pulse of width 10us, should be received
rmt_symbol_word_t long_pulse = {
.level0 = 1,
.duration0 = 10, // pulse width 10us
.level1 = 0,
.duration1 = 1,
};
TEST_ESP_OK(rmt_transmit(tx_channel, copy_encoder, &long_pulse, sizeof(long_pulse), &transmit_config));
TEST_ASSERT_NOT_EQUAL(0, ulTaskNotifyTake(pdFALSE, pdMS_TO_TICKS(1000)));
printf("received %zu symbols\r\n", test_user_data.received_symbol_num);
TEST_ASSERT_EQUAL(1, test_user_data.received_symbol_num);
// verify the received data
printf("{%d:%d},{%d:%d}\r\n", receive_user_buf[0].level0, receive_user_buf[0].duration0, receive_user_buf[0].level1, receive_user_buf[0].duration1);
TEST_ASSERT_EQUAL(1, receive_user_buf[0].level0);
TEST_ASSERT_INT_WITHIN(2, 10, receive_user_buf[0].duration0);
TEST_ASSERT_EQUAL(0, receive_user_buf[0].level1);
printf("disable tx and rx channels\r\n");
TEST_ESP_OK(rmt_disable(tx_channel));
TEST_ESP_OK(rmt_disable(rx_channel));
printf("delete channels and encoder\r\n");
TEST_ESP_OK(rmt_del_channel(rx_channel));
TEST_ESP_OK(rmt_del_channel(tx_channel));
TEST_ESP_OK(rmt_del_encoder(copy_encoder));
free(receive_user_buf);
}
TEST_CASE("rmt rx filter functionality", "[rmt]")
{
// test width different clock sources
rmt_clock_source_t clk_srcs[] = SOC_RMT_CLKS;
for (size_t i = 0; i < sizeof(clk_srcs) / sizeof(clk_srcs[0]); i++) {
test_rmt_receive_filter(clk_srcs[i]);
}
}

Wyświetl plik

@ -331,7 +331,7 @@ As also discussed in the :ref:`rmt-enable-and-disable-channel`, calling :cpp:fun
- :cpp:member:`rmt_receive_config_t::signal_range_min_ns` specifies the minimal valid pulse duration in either high or low logic levels. A pulse width that is smaller than this value is treated as a glitch, and ignored by the hardware.
- :cpp:member:`rmt_receive_config_t::signal_range_max_ns` specifies the maximum valid pulse duration in either high or low logic levels. A pulse width that is bigger than this value is treated as **Stop Signal**, and the receiver generates receive-complete event immediately.
- If the incoming packet is long, that they cannot be stored in the user buffer at once, you can enable the partial reception feature by setting :cpp:member:`rmt_receive_config_t::extra_flags::en_partial_rx` to ``true``. In this case, the driver invokes :cpp:member:`rmt_rx_event_callbacks_t::on_recv_done` callback multiple times during one transaction, when the user buffer is **almost full**. You can check the value of :cpp:member::`rmt_rx_done_event_data_t::is_last` to know if the transaction is about to finish.
- If the incoming packet is long, that they cannot be stored in the user buffer at once, you can enable the partial reception feature by setting :cpp:member:`rmt_receive_config_t::extra_flags::en_partial_rx` to ``true``. In this case, the driver invokes :cpp:member:`rmt_rx_event_callbacks_t::on_recv_done` callback multiple times during one transaction, when the user buffer is **almost full**. You can check the value of :cpp:member::`rmt_rx_done_event_data_t::is_last` to know if the transaction is about to finish. Please note this features is not supported on all ESP series chips because it relies on hardware abilities like "ping-pong receive" or "DMA receive".
The RMT receiver starts the RX machine after the user calls :cpp:func:`rmt_receive` with the provided configuration above. Note that, this configuration is transaction specific, which means, to start a new round of reception, the user needs to set the :cpp:type:`rmt_receive_config_t` again. The receiver saves the incoming signals into its internal memory block or DMA buffer, in the format of :cpp:type:`rmt_symbol_word_t`.

Wyświetl plik

@ -331,7 +331,7 @@ RMT 是一种特殊的通信外设,无法像 SPI 和 I2C 那样发送原始字
- :cpp:member:`rmt_receive_config_t::signal_range_min_ns` 指定高电平或低电平有效脉冲的最小持续时间。如果脉冲宽度小于指定值,硬件会将其视作干扰信号并忽略。
- :cpp:member:`rmt_receive_config_t::signal_range_max_ns` 指定高电平或低电平有效脉冲的最大持续时间。如果脉冲宽度大于指定值,接收器会将其视作 **停止信号**,并立即生成接收完成事件。
- 如果传入的数据包很长,无法一次性保存在用户缓冲区中,可以通过将 :cpp:member:`rmt_receive_config_t::extra_flags::en_partial_rx` 设置为 ``true`` 来开启部分接收功能。在这种情况下,当用户缓冲区快满的时候,驱动会多次调用 :cpp:member:`rmt_rx_event_callbacks_t::on_recv_done` 回调函数来通知用户去处理已经收到的数据。你可以检查 :cpp:member::`rmt_rx_done_event_data_t::is_last` 的值来了解当前事务是否已经结束。
- 如果传入的数据包很长,无法一次性保存在用户缓冲区中,可以通过将 :cpp:member:`rmt_receive_config_t::extra_flags::en_partial_rx` 设置为 ``true`` 来开启部分接收功能。在这种情况下,当用户缓冲区快满的时候,驱动会多次调用 :cpp:member:`rmt_rx_event_callbacks_t::on_recv_done` 回调函数来通知用户去处理已经收到的数据。你可以检查 :cpp:member::`rmt_rx_done_event_data_t::is_last` 的值来了解当前事务是否已经结束。请注意,并不是所有 ESP 系列芯片都支持这个功能,它依赖硬件提供的 “ping-pong 接收” 或者 “DMA 接收” 的能力。
根据以上配置调用 :cpp:func:`rmt_receive`RMT 接收器会启动 RX 机制。注意,以上配置均针对特定事务存在,也就是说,要开启新一轮的接收时,需要再次设置 :cpp:type:`rmt_receive_config_t` 选项。接收器会将传入信号以 :cpp:type:`rmt_symbol_word_t` 的格式保存在内部内存块或 DMA 缓冲区中。