esp-idf/components/sdmmc/sdmmc_mmc.c

306 wiersze
11 KiB
C
Czysty Zwykły widok Historia

2018-06-20 11:59:11 +00:00
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <inttypes.h>
2018-06-20 11:59:11 +00:00
#include <unistd.h>
#include "sdmmc_common.h"
static const char* TAG = "sdmmc_mmc";
esp_err_t sdmmc_init_mmc_read_ext_csd(sdmmc_card_t* card)
{
int card_type;
esp_err_t err = ESP_OK;
uint8_t* ext_csd = NULL;
size_t actual_size = 0;
err = esp_dma_malloc(EXT_CSD_MMC_SIZE, 0, (void *)&ext_csd, &actual_size);
if (err != ESP_OK) {
2018-06-20 11:59:11 +00:00
ESP_LOGE(TAG, "%s: could not allocate ext_csd", __func__);
return err;
2018-06-20 11:59:11 +00:00
}
uint32_t sectors = 0;
ESP_LOGD(TAG, "MMC version: %d", card->csd.mmc_ver);
if (card->csd.mmc_ver < MMC_CSD_MMCVER_4_0) {
err = ESP_ERR_NOT_SUPPORTED;
goto out;
}
/* read EXT_CSD */
err = sdmmc_mmc_send_ext_csd_data(card, ext_csd, EXT_CSD_MMC_SIZE, actual_size);
2018-06-20 11:59:11 +00:00
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_ext_csd_data error 0x%x", __func__, err);
goto out;
}
card_type = ext_csd[EXT_CSD_CARD_TYPE];
card->is_ddr = 0;
2018-06-20 11:59:11 +00:00
if (card_type & EXT_CSD_CARD_TYPE_F_52M_1_8V) {
card->max_freq_khz = SDMMC_FREQ_52M;
if ((card->host.flags & SDMMC_HOST_FLAG_DDR) &&
card->host.max_freq_khz >= SDMMC_FREQ_26M &&
card->host.get_bus_width(card->host.slot) == 4) {
ESP_LOGD(TAG, "card and host support DDR mode");
card->is_ddr = 1;
}
2018-06-20 11:59:11 +00:00
} else if (card_type & EXT_CSD_CARD_TYPE_F_52M) {
card->max_freq_khz = SDMMC_FREQ_52M;
} else if (card_type & EXT_CSD_CARD_TYPE_F_26M) {
card->max_freq_khz = SDMMC_FREQ_26M;
} else {
ESP_LOGW(TAG, "%s: unknown CARD_TYPE 0x%x", __func__, card_type);
}
/* For MMC cards, use speed value from EXT_CSD */
card->csd.tr_speed = card->max_freq_khz * 1000;
ESP_LOGD(TAG, "MMC card type %d, max_freq_khz=%d, is_ddr=%d", card_type, card->max_freq_khz, card->is_ddr);
2018-06-20 11:59:11 +00:00
card->max_freq_khz = MIN(card->max_freq_khz, card->host.max_freq_khz);
if (card->host.flags & SDMMC_HOST_FLAG_8BIT) {
card->ext_csd.power_class = ext_csd[(card->max_freq_khz > SDMMC_FREQ_26M) ?
EXT_CSD_PWR_CL_52_360 : EXT_CSD_PWR_CL_26_360] >> 4;
card->log_bus_width = 3;
} else if (card->host.flags & SDMMC_HOST_FLAG_4BIT) {
card->ext_csd.power_class = ext_csd[(card->max_freq_khz > SDMMC_FREQ_26M) ?
EXT_CSD_PWR_CL_52_360 : EXT_CSD_PWR_CL_26_360] & 0x0f;
card->log_bus_width = 2;
} else {
card->ext_csd.power_class = 0; //card must be able to do full rate at powerclass 0 in 1-bit mode
card->log_bus_width = 0;
}
sectors = ( ext_csd[EXT_CSD_SEC_COUNT + 0] << 0 )
| ( ext_csd[EXT_CSD_SEC_COUNT + 1] << 8 )
| ( ext_csd[EXT_CSD_SEC_COUNT + 2] << 16 )
| ( ext_csd[EXT_CSD_SEC_COUNT + 3] << 24 );
if (sectors > (2u * 1024 * 1024 * 1024) / 512) {
card->csd.capacity = sectors;
}
/* erased state of a bit, if 1 byte value read is 0xFF else 0x00 */
card->ext_csd.erase_mem_state = ext_csd[EXT_CSD_ERASED_MEM_CONT];
card->ext_csd.rev = ext_csd[EXT_CSD_REV];
card->ext_csd.sec_feature = ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
2018-06-20 11:59:11 +00:00
out:
free(ext_csd);
return err;
}
esp_err_t sdmmc_init_mmc_bus_width(sdmmc_card_t* card)
{
esp_err_t err;
if (card->ext_csd.power_class != 0) {
err = sdmmc_mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_CLASS, card->ext_csd.power_class);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: can't change power class (%d bit), 0x%x"
, __func__, card->ext_csd.power_class, err);
return err;
}
}
if (card->log_bus_width > 0) {
int csd_bus_width_value = EXT_CSD_BUS_WIDTH_1;
2018-06-20 11:59:11 +00:00
int bus_width = 1;
if (card->log_bus_width == 2) {
if (card->is_ddr) {
csd_bus_width_value = EXT_CSD_BUS_WIDTH_4_DDR;
} else {
csd_bus_width_value = EXT_CSD_BUS_WIDTH_4;
}
2018-06-20 11:59:11 +00:00
bus_width = 4;
} else if (card->log_bus_width == 3) {
if (card->is_ddr) {
csd_bus_width_value = EXT_CSD_BUS_WIDTH_8_DDR;
} else {
csd_bus_width_value = EXT_CSD_BUS_WIDTH_8;
}
2018-06-20 11:59:11 +00:00
bus_width = 8;
}
err = sdmmc_mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, csd_bus_width_value);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: can't change bus width (%d bit), 0x%x",
__func__, bus_width, err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_mmc_enable_hs_mode(sdmmc_card_t* card)
{
esp_err_t err;
if (card->max_freq_khz > SDMMC_FREQ_26M) {
/* switch to high speed timing */
err = sdmmc_mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, EXT_CSD_HS_TIMING_HS);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: mmc_switch EXT_CSD_HS_TIMING_HS error 0x%x",
__func__, err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_mmc_decode_cid(int mmc_ver, sdmmc_response_t resp, sdmmc_cid_t* out_cid)
{
if (mmc_ver == MMC_CSD_MMCVER_1_0 ||
mmc_ver == MMC_CSD_MMCVER_1_4) {
out_cid->mfg_id = MMC_CID_MID_V1(resp);
out_cid->oem_id = 0;
MMC_CID_PNM_V1_CPY(resp, out_cid->name);
out_cid->revision = MMC_CID_REV_V1(resp);
out_cid->serial = MMC_CID_PSN_V1(resp);
out_cid->date = MMC_CID_MDT_V1(resp);
} else if (mmc_ver == MMC_CSD_MMCVER_2_0 ||
mmc_ver == MMC_CSD_MMCVER_3_1 ||
mmc_ver == MMC_CSD_MMCVER_4_0) {
out_cid->mfg_id = MMC_CID_MID_V2(resp);
out_cid->oem_id = MMC_CID_OID_V2(resp);
MMC_CID_PNM_V1_CPY(resp, out_cid->name);
out_cid->revision = 0;
out_cid->serial = MMC_CID_PSN_V1(resp);
out_cid->date = 0;
}
return ESP_OK;
}
esp_err_t sdmmc_mmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd)
{
out_csd->csd_ver = MMC_CSD_CSDVER(response);
if (out_csd->csd_ver == MMC_CSD_CSDVER_1_0 ||
out_csd->csd_ver == MMC_CSD_CSDVER_2_0 ||
out_csd->csd_ver == MMC_CSD_CSDVER_EXT_CSD) {
out_csd->mmc_ver = MMC_CSD_MMCVER(response);
out_csd->capacity = MMC_CSD_CAPACITY(response);
out_csd->read_block_len = MMC_CSD_READ_BL_LEN(response);
} else {
ESP_LOGE(TAG, "unknown MMC CSD structure version 0x%x", out_csd->csd_ver);
2018-06-20 11:59:11 +00:00
return 1;
}
int read_bl_size = 1 << out_csd->read_block_len;
out_csd->sector_size = MIN(read_bl_size, 512);
if (out_csd->sector_size < read_bl_size) {
out_csd->capacity *= read_bl_size / out_csd->sector_size;
}
/* tr_speed will be determined when reading CXD */
out_csd->tr_speed = 0;
return ESP_OK;
}
esp_err_t sdmmc_mmc_send_ext_csd_data(sdmmc_card_t* card, void *out_data, size_t datalen, size_t buffer_len)
2018-06-20 11:59:11 +00:00
{
assert(esp_ptr_dma_capable(out_data));
sdmmc_command_t cmd = {
.data = out_data,
.datalen = datalen,
.buflen = buffer_len,
2018-06-20 11:59:11 +00:00
.blklen = datalen,
.opcode = MMC_SEND_EXT_CSD,
.arg = 0,
.flags = SCF_CMD_ADTC | SCF_RSP_R1 | SCF_CMD_READ
};
return sdmmc_send_cmd(card, &cmd);
}
esp_err_t sdmmc_mmc_switch(sdmmc_card_t* card, uint8_t set, uint8_t index, uint8_t value)
{
sdmmc_command_t cmd = {
.opcode = MMC_SWITCH,
.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
.flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
2018-06-20 11:59:11 +00:00
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err == ESP_OK) {
//check response bit to see that switch was accepted
if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
2018-06-20 11:59:11 +00:00
err = ESP_ERR_INVALID_RESPONSE;
}
2018-06-20 11:59:11 +00:00
}
return err;
}
esp_err_t sdmmc_init_mmc_check_ext_csd(sdmmc_card_t* card)
{
assert(card->is_mem == 1 && card->rca != 0);
/*
* Integrity check required if card switched to HS mode
* card->max_freq_khz = MIN(card->max_freq_khz, card->host.max_freq_khz)
* For 26MHz limit background see sdmmc_mmc_enable_hs_mode()
*/
if (card->max_freq_khz <= SDMMC_FREQ_26M) {
return ESP_OK;
}
/* ensure EXT_CSD buffer is available before starting any SD-card operation */
uint8_t* ext_csd = NULL;
size_t actual_size = 0;
esp_err_t err = esp_dma_malloc(EXT_CSD_MMC_SIZE, 0, (void *)&ext_csd, &actual_size);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: could not allocate ext_csd", __func__);
return err;
}
/* ensure card is in transfer state before read ext_csd */
uint32_t status;
err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_status returned 0x%x", __func__, err);
goto out;
}
status = ((status & MMC_R1_CURRENT_STATE_MASK) >> MMC_R1_CURRENT_STATE_POS);
if (status != MMC_R1_CURRENT_STATE_TRAN) {
ESP_LOGE(TAG, "%s: card not in transfer state", __func__);
err = ESP_ERR_INVALID_STATE;
goto out;
}
/* read EXT_CSD to ensure device works fine in HS mode */
err = sdmmc_mmc_send_ext_csd_data(card, ext_csd, EXT_CSD_MMC_SIZE, actual_size);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_ext_csd_data error 0x%x", __func__, err);
goto out;
}
/* EXT_CSD static fields should match the previous read values in sdmmc_card_init */
if ((card->ext_csd.rev != ext_csd[EXT_CSD_REV]) ||
(card->ext_csd.sec_feature != ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT])) {
ESP_LOGE(TAG, "%s: Data integrity test fail in HS mode", __func__);
err = ESP_FAIL;
}
out:
free(ext_csd);
return err;
}
uint32_t sdmmc_mmc_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb)
{
/* TODO: calculate erase timeout based on ext_csd (trim_timeout) */
uint32_t timeout_ms = SDMMC_SD_DISCARD_TIMEOUT * erase_size_kb / card->csd.sector_size;
timeout_ms = MAX(1000, timeout_ms);
ESP_LOGD(TAG, "%s: erase timeout %" PRIu32 " s (erasing %" PRIu32 " kB, %" PRIu32 " ms per sector)",
__func__, (uint32_t) (timeout_ms / 1000), (uint32_t) erase_size_kb, (uint32_t) SDMMC_SD_DISCARD_TIMEOUT);
return timeout_ms;
}