kopia lustrzana https://github.com/espressif/esp-idf
161 wiersze
4.9 KiB
C
161 wiersze
4.9 KiB
C
|
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#ifndef ROM_CRC_H
|
||
|
#define ROM_CRC_H
|
||
|
|
||
|
#include <stdint.h>
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/** \defgroup uart_apis, uart configuration and communication related apis
|
||
|
* @brief uart apis
|
||
|
*/
|
||
|
|
||
|
/** @addtogroup uart_apis
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Notes about CRC APIs usage
|
||
|
* The ESP32 ROM include some CRC tables and CRC APIs to speed up CRC calculation.
|
||
|
* The CRC APIs include CRC8, CRC16, CRC32 algorithms for both little endian and big endian modes.
|
||
|
* Here are the polynomials for the algorithms:
|
||
|
* CRC-8 x8+x2+x1+1 0x07
|
||
|
* CRC16-CCITT x16+x12+x5+1 0x1021
|
||
|
* CRC32 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1 0x04c11db7
|
||
|
*
|
||
|
* These group of CRC APIs are designed to calculate the data in buffers either continuous or not.
|
||
|
* To make it easy, we had added a `~` at the beginning and the end of the functions.
|
||
|
* To calculate non-continuous buffers, we can write the code like this:
|
||
|
* init = ~init;
|
||
|
* crc = crc32_le(init, buf0, length0);
|
||
|
* crc = crc32_le(crc, buf1, length1);
|
||
|
* crc = ~crc;
|
||
|
*
|
||
|
* However, it is not easy to select which API to use and give the correct parameters.
|
||
|
* A specific CRC algorithm will include this parameters: width, polynomials, init, refin, refout, xorout
|
||
|
* refin and refout show the endian of the algorithm:
|
||
|
* if both of them are true, please use the little endian API.
|
||
|
* if both of them are false, please use the big endian API.
|
||
|
* xorout is the value which you need to be xored to the raw result.
|
||
|
* However, these group of APIs need one '~' before and after the APIs.
|
||
|
*
|
||
|
* Here are some examples for CRC16:
|
||
|
* CRC-16/CCITT, poly = 0x1021, init = 0x0000, refin = true, refout = true, xorout = 0x0000
|
||
|
* crc = ~crc16_le((uint16_t)~0x0000, buf, length);
|
||
|
*
|
||
|
* CRC-16/CCITT-FALSE, poly = 0x1021, init = 0xffff, refin = false, refout = false, xorout = 0x0000
|
||
|
* crc = ~crc16_be((uint16_t)~0xffff, buf, length);
|
||
|
*
|
||
|
* CRC-16/X25, poly = 0x1021, init = 0xffff, refin = true, refout = true, xorout = 0xffff
|
||
|
* crc = (~crc16_le((uint16_t)~(0xffff), buf, length))^0xffff;
|
||
|
*
|
||
|
* CRC-16/XMODEM, poly= 0x1021, init = 0x0000, refin = false, refout = false, xorout = 0x0000
|
||
|
* crc = ~crc16_be((uint16_t)~0x0000, buf, length);
|
||
|
*
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief CRC32 value that is in little endian.
|
||
|
*
|
||
|
* @param uint32_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint32_t crc32_le(uint32_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @brief CRC32 value that is in big endian.
|
||
|
*
|
||
|
* @param uint32_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint32_t crc32_be(uint32_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @brief CRC16 value that is in little endian.
|
||
|
*
|
||
|
* @param uint16_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint16_t crc16_le(uint16_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @brief CRC16 value that is in big endian.
|
||
|
*
|
||
|
* @param uint16_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint16_t crc16_be(uint16_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @brief CRC8 value that is in little endian.
|
||
|
*
|
||
|
* @param uint8_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint8_t crc8_le(uint8_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @brief CRC8 value that is in big endian.
|
||
|
*
|
||
|
* @param uint32_t crc : init crc value, use 0 at the first use.
|
||
|
*
|
||
|
* @param uint8_t const *buf : buffer to start calculate crc.
|
||
|
*
|
||
|
* @param uint32_t len : buffer length in byte.
|
||
|
*
|
||
|
* @return None
|
||
|
*/
|
||
|
uint8_t crc8_be(uint8_t crc, uint8_t const *buf, uint32_t len);
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#endif
|