esp-idf/components/esp32s2/cp_dma.c

236 wiersze
10 KiB
C
Czysty Zwykły widok Historia

2020-07-28 12:15:13 +00:00
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/cdefs.h>
#include <stdatomic.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "esp_compiler.h"
#include "esp_intr_alloc.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "soc/soc_caps.h"
#include "soc/cp_dma_caps.h"
#include "hal/cp_dma_hal.h"
#include "hal/cp_dma_ll.h"
#include "cp_dma.h"
#include "soc/periph_defs.h"
static const char *TAG = "cp_dma";
#define CP_DMA_CHECK(a, msg, tag, ret, ...) \
do { \
if (unlikely(!(a))) { \
ESP_LOGE(TAG, "%s(%d): " msg, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret_code = ret; \
goto tag; \
} \
} while (0)
/**
* @brief Stream is high level abstraction over descriptor.
* It combines the descriptor used by DMA and the callback function registered by user.
* The benifit is, we can converter the descriptor address into stream handle.
*/
typedef struct {
cp_dma_descriptor_t tx_desc;
cp_dma_isr_cb_t cb;
void *cb_args;
} cp_dma_out_stream_t;
typedef struct {
cp_dma_descriptor_t rx_desc;
cp_dma_isr_cb_t cb;
void *cb_args;
} cp_dma_in_stream_t;
typedef struct cp_dma_driver_context_s {
uint32_t max_out_stream;
uint32_t max_in_stream;
uint32_t flags;
cp_dma_hal_context_t hal; // HAL context
intr_handle_t intr_hdl; // interrupt handle
portMUX_TYPE spin_lock;
cp_dma_out_stream_t *out_streams; // pointer to the first out stream
cp_dma_in_stream_t *in_streams; // pointer to the first in stream
uint8_t streams[0]; // stream buffer (out streams + in streams), the size if configured by user
} cp_dma_driver_context_t;
static void cp_dma_isr_default_handler(void *arg) IRAM_ATTR;
esp_err_t cp_dma_driver_install(const cp_dma_config_t *config, cp_dma_driver_t *drv_hdl)
{
esp_err_t ret_code = ESP_OK;
cp_dma_driver_context_t *cp_dma_driver = NULL;
CP_DMA_CHECK(config, "configuration can't be null", err, ESP_ERR_INVALID_ARG);
CP_DMA_CHECK(drv_hdl, "driver handle can't be null", err, ESP_ERR_INVALID_ARG);
size_t total_malloc_size = sizeof(cp_dma_driver_context_t) + sizeof(cp_dma_out_stream_t) * config->max_out_stream + sizeof(cp_dma_in_stream_t) * config->max_in_stream;
if (config->flags & CP_DMA_FLAGS_WORK_WITH_CACHE_DISABLED) {
// to work when cache is disabled, make sure to put driver handle in DRAM
cp_dma_driver = heap_caps_calloc(1, total_malloc_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
} else {
cp_dma_driver = calloc(1, total_malloc_size);
}
CP_DMA_CHECK(cp_dma_driver, "allocate driver memory failed", err, ESP_ERR_NO_MEM);
int int_flags = 0;
if (config->flags & CP_DMA_FLAGS_WORK_WITH_CACHE_DISABLED) {
int_flags |= ESP_INTR_FLAG_IRAM; // make sure interrupt can still work when cache is disabled
}
ret_code = esp_intr_alloc(ETS_DMA_COPY_INTR_SOURCE, int_flags, cp_dma_isr_default_handler, cp_dma_driver, &cp_dma_driver->intr_hdl);
CP_DMA_CHECK(ret_code == ESP_OK, "allocate intr failed", err, ret_code);
cp_dma_driver->out_streams = (cp_dma_out_stream_t *)cp_dma_driver->streams;
cp_dma_driver->in_streams = (cp_dma_in_stream_t *)(cp_dma_driver->streams + config->max_out_stream * sizeof(cp_dma_out_stream_t));
// HAL layer has no idea about "data stream" but TX/RX descriptors
// We put all descritprs' addresses into an array, HAL driver will make it a loop during initialization
{
cp_dma_descriptor_t *tx_descriptors[config->max_out_stream];
cp_dma_descriptor_t *rx_descriptors[config->max_in_stream];
for (int i = 0; i < config->max_out_stream; i++) {
tx_descriptors[i] = &cp_dma_driver->out_streams[i].tx_desc;
}
for (int i = 0; i < config->max_in_stream; i++) {
rx_descriptors[i] = &cp_dma_driver->in_streams[i].rx_desc;
}
cp_dma_hal_init(&cp_dma_driver->hal, tx_descriptors, config->max_out_stream, rx_descriptors, config->max_in_stream);
} // limit the scope of tx_descriptors and rx_descriptors so that goto can jump after this code block
cp_dma_driver->spin_lock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
cp_dma_driver->max_in_stream = config->max_in_stream;
cp_dma_driver->max_out_stream = config->max_out_stream;
*drv_hdl = cp_dma_driver;
cp_dma_hal_start(&cp_dma_driver->hal); // enable DMA and interrupt
return ESP_OK;
err:
if (cp_dma_driver) {
if (cp_dma_driver->intr_hdl) {
esp_intr_free(cp_dma_driver->intr_hdl);
}
free(cp_dma_driver);
}
if (drv_hdl) {
*drv_hdl = NULL;
}
return ret_code;
}
esp_err_t cp_dma_driver_uninstall(cp_dma_driver_t drv_hdl)
{
esp_err_t ret_code = ESP_OK;
CP_DMA_CHECK(drv_hdl, "driver handle can't be null", err, ESP_ERR_INVALID_ARG);
esp_intr_free(drv_hdl->intr_hdl);
cp_dma_hal_stop(&drv_hdl->hal);
cp_dma_hal_deinit(&drv_hdl->hal);
free(drv_hdl);
return ESP_OK;
err:
return ret_code;
}
esp_err_t cp_dma_memcpy(cp_dma_driver_t drv_hdl, void *dst, void *src, size_t n, cp_dma_isr_cb_t cb_isr, void *cb_args)
{
esp_err_t ret_code = ESP_OK;
cp_dma_descriptor_t *rx_start_desc = NULL;
cp_dma_descriptor_t *rx_end_desc = NULL;
cp_dma_descriptor_t *tx_start_desc = NULL;
cp_dma_descriptor_t *tx_end_desc = NULL;
int rx_prepared_size = 0;
int tx_prepared_size = 0;
CP_DMA_CHECK(drv_hdl, "driver handle can't be null", err, ESP_ERR_INVALID_ARG);
// CP_DMA can only access SRAM
CP_DMA_CHECK(esp_ptr_internal(src) && esp_ptr_internal(dst), "address not in SRAM", err, ESP_ERR_INVALID_ARG);
CP_DMA_CHECK(n <= SOC_CP_DMA_MAX_BUFFER_SIZE * drv_hdl->max_out_stream, "exceed max num of tx stream", err, ESP_ERR_INVALID_ARG);
CP_DMA_CHECK(n <= SOC_CP_DMA_MAX_BUFFER_SIZE * drv_hdl->max_in_stream, "exceed max num of rx stream", err, ESP_ERR_INVALID_ARG);
if (cb_isr && (drv_hdl->flags & CP_DMA_FLAGS_WORK_WITH_CACHE_DISABLED)) {
CP_DMA_CHECK(esp_ptr_in_iram(cb_isr), "callback(%p) not in IRAM", err, ESP_ERR_INVALID_ARG, cb_isr);
}
// Prepare TX and RX descriptor
portENTER_CRITICAL_SAFE(&drv_hdl->spin_lock);
// prepare functions will not change internal status of HAL until cp_dma_hal_restart_* are called
rx_prepared_size = cp_dma_hal_prepare_receive(&drv_hdl->hal, dst, n, &rx_start_desc, &rx_end_desc);
tx_prepared_size = cp_dma_hal_prepare_transmit(&drv_hdl->hal, src, n, &tx_start_desc, &tx_end_desc);
if ((rx_prepared_size == n) && (tx_prepared_size == n)) {
// register user callback to the end-of-frame descriptor (must before we restart RX)
cp_dma_in_stream_t *data_stream_rx = __containerof(rx_end_desc, cp_dma_in_stream_t, rx_desc);
data_stream_rx->cb = cb_isr;
data_stream_rx->cb_args = cb_args;
// The restart should be called with the exact returned start and end desc from previous successful prepare calls
cp_dma_hal_restart_rx(&drv_hdl->hal, rx_start_desc, rx_end_desc);
cp_dma_hal_restart_tx(&drv_hdl->hal, tx_start_desc, tx_end_desc);
}
portEXIT_CRITICAL_SAFE(&drv_hdl->spin_lock);
CP_DMA_CHECK(rx_prepared_size == n, "out of rx descriptor", err, ESP_FAIL);
// It's unlikely that we have space for rx descriptor but no space for tx descriptor
// Because in CP_DMA, both tx and rx descriptor should move in the same pace
CP_DMA_CHECK(tx_prepared_size == n, "out of tx descriptor", err, ESP_FAIL);
return ESP_OK;
err:
return ret_code;
}
/**
* @brief Default ISR handler provided by ESP-IDF
*/
static void cp_dma_isr_default_handler(void *args)
{
cp_dma_driver_context_t *cp_dma_driver = (cp_dma_driver_context_t *)args;
cp_dma_in_stream_t *in_stream = NULL;
cp_dma_descriptor_t *next_desc = NULL;
bool need_yield = false;
bool to_continue = false;
portENTER_CRITICAL_ISR(&cp_dma_driver->spin_lock);
uint32_t status = cp_dma_hal_get_intr_status(&cp_dma_driver->hal);
cp_dma_hal_clear_intr_status(&cp_dma_driver->hal, status);
portEXIT_CRITICAL_ISR(&cp_dma_driver->spin_lock);
ESP_EARLY_LOGD(TAG, "intr status=0x%x", status);
// End-Of-Frame on RX side
if (status & CP_DMA_LL_EVENT_RX_EOF) {
cp_dma_descriptor_t *eof = (cp_dma_descriptor_t *)cp_dma_ll_get_rx_eof_descriptor_address(cp_dma_driver->hal.dev);
// traversal all unchecked descriptors
do {
portENTER_CRITICAL_ISR(&cp_dma_driver->spin_lock);
// There is an assumption that the usage of rx descriptors are in the same pace as tx descriptors (this is determined by CP DMA working mechanism)
// And once the rx descriptor is recycled, the corresponding tx desc is guaranteed to be returned by DMA
to_continue = cp_dma_hal_get_next_rx_descriptor(&cp_dma_driver->hal, eof, &next_desc);
portEXIT_CRITICAL_ISR(&cp_dma_driver->spin_lock);
if (next_desc) {
in_stream = __containerof(next_desc, cp_dma_in_stream_t, rx_desc);
// invoke user registered callback if available
if (in_stream->cb) {
cp_dma_event_t e = {.id = CP_DMA_EVENT_M2M_DONE};
if (in_stream->cb(cp_dma_driver, &e, in_stream->cb_args)) {
need_yield = true;
}
in_stream->cb = NULL;
in_stream->cb_args = NULL;
}
}
} while (to_continue);
}
if (need_yield) {
portYIELD_FROM_ISR();
}
}