ESP32 application can do upgrading at runtime by downloading new image from specific server through Wi-Fi or Ethernet and then flash it into some partitions. There’re two ways in ESP-IDF to perform Over The Air (OTA) upgrading:
- Using the native APIs provided by `app_update` component.
- Using simplified APIs provided by `esp_https_ota` component, which adds an abstraction layer over the native OTA APIs in order to upgrading with HTTPS protocol.
Use of native APIs is demonstrated under `native_ota_example` while use of APIs provided by `esp_https_ota` component is demonstrated under `simple_ota_example` and `advanced_https_ota`.
For information regarding APIs provided by `esp_https_ota` component, please refer to [ESP HTTPS OTA](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_https_ota.html).
For simplicity, the OTA examples choose the pre-defined partition table by enabling `CONFIG_PARTITION_TABLE_TWO_OTA` option in menuconfig, which supports three app partitions: factory, OTA_0 and OTA_1. For more information about partition table, please refer to [Partition Tables](https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/partition-tables.html).
On first boot, the bootloader will load the factory app image (i.e. the example image) and then triggers an OTA upgrading. It will download a new image from HTTPS server and save it into the OTA_0 partition. It will update the ota_data partition automatically as well to indicate which app should boot from in the next reset. The bootloader will read the content in ota_data partition and run the selected application.
To run the OTA examples, you need an ESP32 dev board (e.g. ESP32-WROVER Kit) or ESP32 core board (e.g. ESP32-DevKitC). If you want to test the OTA with Ethernet, make sure your board has set up the Ethernet correctly. For extra information about setting up Ethernet, please refer to Ethernet examples.
* Set the URL of the new firmware that you will download from in the `Firmware Upgrade URL` option, whose format should be `https://<host-ip-address>:<host-port>/<firmware-image-filename>`, e.g. `https://192.168.2.106:8070/hello-world.bin`
* **Notes:** The server part of this URL (e.g. `192.168.2.106`) must match the **CN** field used when [generating the certificate and key](#run-https-server).
Run `idf.py -p PORT flash monitor` to build and flash the project.. This command will find if partition table has ota_data partition (as in our case) then ota_data will erase to initial. It allows to run the newly loaded app from a factory partition.
See the [Getting Started Guide](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html) for full steps to configure and use ESP-IDF to build projects.
* Enter a directory where holds the root of the HTTPS server, e.g. `cd build`.
* To create a new self-signed certificate and key, you can simply run command `openssl req -x509 -newkey rsa:2048 -keyout ca_key.pem -out ca_cert.pem -days 365 -nodes`.
* When prompted for the `Common Name (CN)`, enter the name of the server that the ESP32 will connect to. Regarding this example, it is probably the IP address. The HTTPS client will make sure that the `CN` matches the address given in the HTTPS URL.
* To start the HTTPS server, you can simply run command `openssl s_server -WWW -key ca_key.pem -cert ca_cert.pem -port 8070`.
* In the same directory, there should be the firmware (e.g. hello-world.bin) that ESP32 will download later. It can be any other ESP-IDF application as well, as long as you also update the `Firmware Upgrade URL` in the menuconfig. The only difference is that when flashed via serial the binary is flashed to the "factory" app partition, and an OTA update flashes to an OTA app partition.
* **Notes:** If you have any firewall software running that will block incoming access to port *8070*, configure it to allow access while running the example.
* **Notes:** Windows users may encounter certain issues while running `openssl s_server -WWW`, due to CR/LF translation and/or closing the connection prematurely
(Some windows builds of openssl translate CR/LF sequences to LF in the served files, leading to corrupted image received by the OTA client; Others might interpret `0x1a`/`SUB` character in the binary as an escape sequence, i.e. end of file, thus closing the connection, failing the OTA client to receive the entire image).
* It's recommended to use `openssl` bundled in `Git For Windows` from the [ESP-IDF Tool installer](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/windows-setup.html):
Open the ESP-IDF command prompt and add the internal openssl binary to your path: `set PATH=%LocalAppData%\Git\usr\bin;%PATH%` and run the openssl's http server command as above.
* Alternatively, you can use any windows based openssl of version at least `v1.1.1i` build on `Msys-x86_64` platform, or a simple python https server -- see start_https_server in the [example_test](simple_ota_example/example_test.py) script.
Before you flash the example, make sure to copy the generated certificate to `server_certs` directory inside OTA example directory so that it can be flashed into ESP32 together with the firmware, e.g. `cp ca_cert.pem ../server_certs/`.
If you want to rollback to factory app (or the first OTA partition when the factory partition do not exist) after the upgrade, then run the command `idf.py erase_otadata`. It can erase the ota_data partition to initial state.
This feature allows you to roll back to the previous firmware if the app is not operable. Option `CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE` allows you to track the first boot of the application (see the ``Over The Air Updates (OTA)`` article).
For ``native_ota_example``, added a bit of code to demonstrate how a rollback works. To use it, you need enable the `CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE` option in menuconfig and under the "Example Configuration" submenu to set "Number of the GPIO input for diagnostic" to manage the rollback process.
To trigger a rollback, this GPIO must be pulled low while the message `Diagnostics (5 sec)...` which will be on first boot.
If GPIO is not pulled low then the operable of the app will be confirmed.
## Support the version of application
For ``native_ota_example``, code has been added to demonstrate how to check the version of the application and prevent infinite firmware updates. Only the application with the new version can be downloaded. Version checking is performed after the very first firmware image package has been received, which contains data about the firmware version. The application version can be taken from three places:
In ``native_ota_example``, ``$PROJECT_PATH/version.txt`` is used to define the version of app. Change the version in the file to compile the new firmware.
* Check whether you can see the configured file (default hello-world.bin), by checking the output of the command `curl -v https://<host-ip-address>:<host-port>/<firmware-image-filename>`
If you see this error then check that the configured (and actual) flash size is large enough for the partitions in the partition table. The default "two OTA slots" partition table only works with 4MB flash size. To use OTA with smaller flash sizes, create a custom partition table CSV (look in components/partition_table) and configure it in menuconfig.
Running a local https server might be tricky in some cases (due to self signed certificates, or potential issues with `openssl s_server` on Windows). Here are some tips of using other means of running http(s) server:
* Run a non secure HTTP server to test the connection. (Note that using a plain http is **not secure** and should be used for testing purpose only)
- Execute `python -m http.server 8070` in the directory with the firmware image.
- Use http://<host-ip>:8070/<firmware-name> as firmware upgrade URL.
- Enable *Allow HTTP for OTA* (`CONFIG_OTA_ALLOW_HTTP`) in `Component config -> ESP HTTPS OTA` so the URI with no certificate is accepted.
* Start the https server using [example_test](simple_ota_example/example_test.py) with two or more parameters: `example_test.py <BIN_DIR> <PORT> [CERT_DIR]`, where
* Post the firmware image to some public server (e.g. github.com) and copy it's root certificate to the `server_certs` dir as `ca_cert.pem`. (The certificate could be downloaded using the `s_client` openssl command, if the host includes the root certificate in the chain, for example `openssl s_client -showcerts -connect github.com:443 </dev/null`)