description: "[Emby](https://emby.media/) organizes video, music, live TV, and photos from personal media libraries and streams them to smart TVs, streaming boxes and mobile devices. This container is packaged as a standalone emby Media Server."
[Emby](https://emby.media/) organizes video, music, live TV, and photos from personal media libraries and streams them to smart TVs, streaming boxes and mobile devices. This container is packaged as a standalone emby Media Server.
We utilise the docker manifest for multi-platform awareness. More information is available from docker [here](https://distribution.github.io/distribution/spec/manifest-v2-2/#manifest-list) and our announcement [here](https://blog.linuxserver.io/2019/02/21/the-lsio-pipeline-project/).
This image provides various versions that are available via tags. Please read the descriptions carefully and exercise caution when using unstable or development tags.
Hardware acceleration users for Raspberry Pi MMAL/OpenMAX will need to mount their `/dev/vcsm` and `/dev/vchiq` video devices inside of the container and their system OpenMax libs by passing the following options when running or creating the container:
Hardware acceleration users for Raspberry Pi V4L2 will need to mount their `/dev/video1X` devices inside of the container by passing the following options when running or creating the container:
Many desktop applications need access to a GPU to function properly and even some Desktop Environments have compositor effects that will not function without a GPU. However this is not a hard requirement and all base images will function without a video device mounted into the container.
We automatically add the necessary environment variable that will utilise all the features available on a GPU on the host. Once nvidia-container-toolkit is installed on your host you will need to re/create the docker container with the nvidia container runtime `--runtime=nvidia` and add an environment variable `-e NVIDIA_VISIBLE_DEVICES=all` (can also be set to a specific gpu's UUID, this can be discovered by running `nvidia-smi --query-gpu=gpu_name,gpu_uuid --format=csv` ). NVIDIA automatically mounts the GPU and drivers from your host into the container.
Best effort is made to install tools to allow mounting in /dev/dri on Arm devices. In most cases if /dev/dri exists on the host it should just work. If running a Raspberry Pi 4 be sure to enable `dtoverlay=vc4-fkms-v3d` in your usercfg.txt.
Containers are configured using parameters passed at runtime (such as those above). These parameters are separated by a colon and indicate `<external>:<internal>` respectively. For example, `-p 8080:80` would expose port `80` from inside the container to be accessible from the host's IP on port `8080` outside the container.
For all of our images we provide the ability to override the default umask settings for services started within the containers using the optional `-e UMASK=022` setting.
Keep in mind umask is not chmod it subtracts from permissions based on it's value it does not add. Please read up [here](https://en.wikipedia.org/wiki/Umask) before asking for support.
When using volumes (`-v` flags), permissions issues can arise between the host OS and the container, we avoid this issue by allowing you to specify the user `PUID` and group `PGID`.
[](https://mods.linuxserver.io/?mod=emby "view available mods for this container.") [](https://mods.linuxserver.io/?mod=universal "view available universal mods.")
We publish various [Docker Mods](https://github.com/linuxserver/docker-mods) to enable additional functionality within the containers. The list of Mods available for this image (if any) as well as universal mods that can be applied to any one of our images can be accessed via the dynamic badges above.
Most of our images are static, versioned, and require an image update and container recreation to update the app inside. With some exceptions (noted in the relevant readme.md), we do not recommend or support updating apps inside the container. Please consult the [Application Setup](#application-setup) section above to see if it is recommended for the image.
Below are the instructions for updating containers:
### Via Docker Compose
* Update images:
* All images:
```bash
docker-compose pull
```
* Single image:
```bash
docker-compose pull emby
```
* Update containers:
* All containers:
```bash
docker-compose up -d
```
* Single container:
```bash
docker-compose up -d emby
```
* You can also remove the old dangling images:
```bash
docker image prune
```
### Via Docker Run
* Update the image:
```bash
docker pull lscr.io/linuxserver/emby:latest
```
* Stop the running container:
```bash
docker stop emby
```
* Delete the container:
```bash
docker rm emby
```
* Recreate a new container with the same docker run parameters as instructed above (if mapped correctly to a host folder, your `/config` folder and settings will be preserved)
We recommend [Diun](https://crazymax.dev/diun/) for update notifications. Other tools that automatically update containers unattended are not recommended or supported.
## Building locally
If you want to make local modifications to these images for development purposes or just to customize the logic:
* **21.12.20:** - Rebase to Focal, see [here](https://docs.linuxserver.io/faq#my-host-is-incompatible-with-images-based-on-ubuntu-focal) for troubleshooting armhf.