dl-fldigi/src/filters/fftfilt.cxx

313 wiersze
8.1 KiB
C++

// ----------------------------------------------------------------------------
// fftfilt.cxx -- Fast convolution Overlap-Add filter
//
// Filter implemented using overlap-add FFT convolution method
// h(t) characterized by Windowed-Sinc impulse response
//
// Reference:
// "The Scientist and Engineer's Guide to Digital Signal Processing"
// by Dr. Steven W. Smith, http://www.dspguide.com
// Chapters 16, 18 and 21
//
// Copyright (C) 2006-2008 Dave Freese, W1HKJ
//
// This file is part of fldigi.
//
// Fldigi is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Fldigi is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with fldigi. If not, see <http://www.gnu.org/licenses/>.
// ----------------------------------------------------------------------------
#include <config.h>
#include <memory.h>
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cmath>
#include <typeinfo>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory.h>
#include "misc.h"
#include "fftfilt.h"
//------------------------------------------------------------------------------
// initialize the filter
// create forward and reverse FFTs
//------------------------------------------------------------------------------
// probably only need a single instance of g_fft !!
// use for both forward and reverse
void fftfilt::clear_filter()
{
memset(filter, 0, flen * sizeof(cmplx));
memset(timedata, 0, flen * sizeof(cmplx));
memset(freqdata, 0, flen * sizeof(cmplx));
memset(output, 0, flen * sizeof(cmplx));
memset(ovlbuf, 0, flen2 * sizeof(cmplx));
memset(ht, 0, flen * sizeof(cmplx));
inptr = 0;
}
void fftfilt::init_filter()
{
flen2 = flen >> 1;
fft = new g_fft<double>(flen);
filter = new cmplx[flen];
timedata = new cmplx[flen];
freqdata = new cmplx[flen];
output = new cmplx[flen];
ovlbuf = new cmplx[flen2];
ht = new cmplx[flen];
}
// number of samples needed to completely flush the filter
int fftfilt::flush_size()
{
return flen - inptr;
}
//------------------------------------------------------------------------------
// fft filter
// f1 < f2 ==> band pass filter
// f1 > f2 ==> band reject filter
// f1 == 0 ==> low pass filter
// f2 == 0 ==> high pass filter
//------------------------------------------------------------------------------
fftfilt::fftfilt(double f1, double f2, int len)
{
flen = len;
init_filter();
create_filter(f1, f2);
}
//------------------------------------------------------------------------------
// low pass filter
//------------------------------------------------------------------------------
fftfilt::fftfilt(double f, int len)
{
flen = len;
init_filter();
create_lpf(f);
}
fftfilt::~fftfilt()
{
if (fft) delete fft;
if (filter) delete [] filter;
if (timedata) delete [] timedata;
if (freqdata) delete [] freqdata;
if (output) delete [] output;
if (ovlbuf) delete [] ovlbuf;
if (ht) delete [] ht;
}
void fftfilt::create_filter(double f1, double f2)
{
clear_filter();
// initialize the filter to zero
memset(ht, 0, flen * sizeof(cmplx));
// create the filter shape coefficients by fft
// filter values initialized to the ht response h(t)
bool b_lowpass, b_highpass;//, window;
b_lowpass = (f2 != 0);
b_highpass = (f1 != 0);
for (int i = 0; i < flen2; i++) {
ht[i] = 0;
//combine lowpass / highpass
// lowpass @ f2
if (b_lowpass) ht[i] += fsinc(f2, i, flen2);
// highighpass @ f1
if (b_highpass) ht[i] -= fsinc(f1, i, flen2);
}
// highpass is delta[flen2/2] - h(t)
if (b_highpass && f2 < f1) ht[flen2 / 2] += 1;
for (int i = 0; i < flen2; i++)
ht[i] *= _blackman(i, flen2);
// this may change since green fft is in place fft
memcpy(filter, ht, flen * sizeof(cmplx));
// ht is flen complex points with imaginary all zero
// first half describes h(t), second half all zeros
// perform the cmplx forward fft to obtain H(w)
// filter is flen/2 complex values
fft->ComplexFFT(filter);
// fft->transform(ht, filter);
// normalize the output filter for unity gain
double scale = 0, mag;
for (int i = 0; i < flen2; i++) {
mag = abs(filter[i]);
if (mag > scale) scale = mag;
}
if (scale != 0) {
for (int i = 0; i < flen; i++)
filter[i] /= scale;
}
// perform the reverse fft to obtain h(t)
// for testing
// uncomment to obtain filter characteristics
/*
cmplx *revht = new cmplx[flen];
memcpy(revht, filter, flen * sizeof(cmplx));
fft->InverseComplexFFT(revht);
std::fstream fspec;
fspec.open("fspec.csv", std::ios::out);
fspec << "i,imp.re,imp.im,filt.re,filt.im,filt.abs,revimp.re,revimp.im\n";
for (int i = 0; i < flen2; i++)
fspec
<< i << "," << ht[i].real() << "," << ht[i].imag() << ","
<< filter[i].real() << "," << filter[i].imag() << ","
<< abs(filter[i]) << ","
<< revht[i].real() << "," << revht[i].imag() << ","
<< std::endl;
fspec.close();
delete [] revht;
*/
// start output after 2 full passes are complete
pass = 1;
}
/*
* Filter with fast convolution (overlap-add algorithm).
*/
int fftfilt::run(const cmplx & in, cmplx **out)
{
// collect flen/2 input samples
timedata[inptr++] = in;
if (inptr < flen2)
return 0;
if (pass) --pass; // filter output is not stable until 2 passes
// FFT transpose to the frequency domain
memcpy(freqdata, timedata, flen * sizeof(cmplx));
fft->ComplexFFT(freqdata);
// multiply with the filter shape
for (int i = 0; i < flen; i++)
freqdata[i] *= filter[i];
// transform back to time domain
fft->InverseComplexFFT(freqdata);
// overlap and add
// save the second half for overlapping next inverse FFT
for (int i = 0; i < flen2; i++) {
output[i] = ovlbuf[i] + freqdata[i];
ovlbuf[i] = freqdata[i+flen2];
}
// clear inbuf pointer
inptr = 0;
// signal the caller there is flen/2 samples ready
if (pass) return 0;
*out = output;
return flen2;
}
//------------------------------------------------------------------------------
// rtty filter
//------------------------------------------------------------------------------
//bool print_filter = true; // flag to inhibit printing multiple copies
void fftfilt::rtty_filter(double f)
{
// Raised cosine filter designed iaw Section 1.2.6 of
// Telecommunications Measurements, Analysis, and Instrumentation
// by Dr. Kamilo Feher / Engineers of Hewlett-Packard
//
// Frequency scaling factor determined hueristically by testing various values
// and measuring resulting decoder CER with input s/n = - 9 dB
//
// K CER
// 1.0 .0244
// 1.1 .0117
// 1.2 .0081
// 1.3 .0062
// 1.4 .0054
// 1.5 .0062
// 1.6 .0076
f *= 1.4;
double dht;
for( int i = 0; i < flen2; ++i ) {
double x = (double)i/(double)(flen2);
// raised cosine response (changed for -1.0...+1.0 times Nyquist-f
// instead of books versions ranging from -1..+1 times samplerate)
dht =
x <= 0 ? 1.0 :
x > 2.0 * f ? 0.0 :
cos((M_PI * x) / (f * 4.0));
dht *= dht; // cos^2
// amplitude equalized nyquist-channel response
dht /= sinc(2.0 * i * f);
filter[i] =
cmplx( dht*cos((double)i* - 0.5*M_PI),
dht*sin((double)i* - 0.5*M_PI) );
filter[(flen-i)%flen] =
cmplx( dht*cos((double)i*+0.5*M_PI),
dht*sin((double)i*+0.5*M_PI) );
}
// perform the reverse fft to obtain h(t)
// for testing
// uncomment to obtain filter characteristics
/*
cmplx *revht = new cmplx[flen];
memcpy(revht, filter, flen * sizeof(cmplx));
fft->InverseComplexFFT(revht);
std::fstream fspec;
fspec.open("rtty_filter.csv", std::ios::out);
fspec << "i,filt.re,filt.im,filt.abs,,revimp.re,revimp.im\n";
for (int i = 0; i < flen; i++)
fspec
<< i << ","
<< filter[i].real() << "," << filter[i].imag() << "," << abs(filter[i])
<< ",," << revht[i].real() << "," << revht[i].imag()
<< std::endl;
fspec.close();
delete [] revht;
*/
// start output after 2 full passes are complete
pass = 1;
}