dl-fldigi/fldigi_doxygen/user_src_docs/DigiWWV.txt

333 wiersze
9.6 KiB
Plaintext

/**
\page digiscope_display_wwv_mode Digiscope Display - WWV mode
\tableofcontents
The WWV mode is used to measure the offset of the sound card oscillator.
It does this by comparing the timing loop for the sound card measurements
against the clock tick signal that is transmitted by WWV and WWVH. The
sampling rate for the sound card should be set to "native". The sound card
samples the signal and returns the values in 512 blocks. This block
sampling is what sets the basic timing mechanism for the thread that
reads the sound card, sends data to the waterfall, and sends data to
the modem signal processing functions. A process of filtering is
used that simultaneously reduces the sampling rate. Most modern
soundcards will use 44100 or 48000 as the native smampling rate.
That sample rate in down converted to 1000 using a decimation in time
type FIR. The resulting signal is then power detected and
further filtered with a filter called a moving average filter. The moving
average is very good at detecting the edge of a pulse such as the 1 second
tick transmitted by WWV. This output is then displayed in a manner very
similar to a FAX signal. Each scan line represents the received signal
over a 1 second interval. The bright white line is the time tick. You can
see a very slight slope from left to right as the signal goes from top to
bottom of the display.
<br>
Open the configure dialog box to the "SndCrd" tab. You are going
to be adjusting the "Rx corr Rate" while you observe the effect of this
control on the slope of the time tick line.
<br>
Tune in WWV or WWVH on 2.5, 5.0, 10.0 or 15.0 MHz in the AM mode. This
seems to give the best signal view. Select the WWV modem and allow the data
to begin to accumulate in the digiscope display. When you can clearly see
the bright tick line, move the cursor to the bottom of the line and left
click at that position. That will resync the digiscope display and put the
ensuing tick marks at the center line red graticule.
<br>
Then right click anywhere in the digiscope display. That changes
the zoom level to show more detail regarding the slope of the time tick
line. The zoom level increases by a factor of 5. Right
clicking again restores the original zoom level. I recommend
making the adjustments to the Rx corr Rate control in the x5 zoom level.
<br>
If the slope of the time tick line is positive you will need to apply a
negative value to the Rx corr Rate. If it is negative then a
positive correction is needed.
<br>
Start with a correction of 0 ppm and observe the slope. Try a
value of 1000 ppm and observe the slope. Again, try a -1000 ppm
correction and observe the slope. The following are some observations
made on 10 MHz WWV, DCF-77 and RWM under less than ideal conditions.
<br>
\image html wwv3.png "WWV corrected 20 minute trace 5x scale"
\image latex wwv3.png "WWV corrected 20 minute trace 5x scale" width=1.25in
\htmlonly
<table style="text-align: left; width: 100px;" border="0" cellpadding="2" cellspacing="2">
<tr>
<td style="vertical-align: top; text-align: center;">
<img style="width: 117px; height: 115px;" alt="" src="wwv1-lgneg.png">
<br>
-1000 ppm WWV<br>
5x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 116px; height: 116px;" alt="" src="wwv2-000ppm.png">
<br>
0 ppm WWV<br>
5x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 117px; height: 118px;" alt="" src="wwv2-lgpos.png">
<br>
+1000 ppm WWV<br>
5x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 117px; height: 116px;" alt="" src="wwv2-125ppm.png">
+120 ppm WWV<br>
5x scale</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: center;">
<img style="width: 114px; height: 115px;" alt="" src="dcf77-0.png">
<br>
0 ppm DCF-77 <br>
1x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 114px; height: 114px;" alt="" src="dcf77-0zoom.png">
<br>
0 ppm DCF-77<br>
5x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 115px; height: 115px;" alt="" src="dcf77-1000.png">
<br>
+1000 ppm DCF-77<br>
1x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 114px; height: 114px;" alt="" src="dcf77-65zoom.png">
<br>
+65 ppm DCF-77<br>
5x scale</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: center;">
<img style="width: 121px; height: 121px;" alt="" src="RWMpre-cal.png">
<br>
RWM uncorrected<br>
1x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 119px; height: 121px;" alt="" src="RWM+25361ppm.png">
<br>
RWM <br>+25361 ppm<br>
1x scale</td>
<td style="vertical-align: top; text-align: center;">
<img style="width: 119px; height: 119px;" alt="" src="RWMpost-cal-x5.png">
<br>
RWM <br>+25361 ppm<br>
5x scale</td>
<td style="vertical-align: top;">
<br>
</td>
</tr>
</table>
\endhtmlonly
\latexonly
\begin{figure}[H]
\centering
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{wwv1-lgneg.png}
\caption{0 ppm WWV 5x scale}
\label{fig:wwv1_lgneg}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{wwv2-000ppm.png}
\caption{+1000 ppm WWV 5x scale}
\label{fig:wwv2_000ppm}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{wwv2-lgpos.png}
\caption{-1000 ppm WWV 5x scale}
\label{fig:wwv2_lgpos}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{wwv2-125ppm.png}
\caption{+120 ppm WWV 5x scale}
\label{fig:wwv2_125ppm}
\end{subfigure}
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{dcf77-0.png}
\caption{0 ppm DCF-77 1x scale}
\label{fig:dcf77_0}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{dcf77-0zoom.png}
\caption{0 ppm DCF-77 5x scale}
\label{fig:dcf77_0zoom}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{dcf77-1000.png}
\caption{+1000 ppm DCF-77 1x scale}
\label{fig:dcf77_1000}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{dcf77-65zoom.png}
\caption{+65 ppm DCF-77 5x scale}
\label{fig:dcf77_65zoom}
\end{subfigure}
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{RWMpre-cal.png}
\caption{RWM uncorrected 1x scale}
\label{fig:RWMpre_cal}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{RWM+25361ppm.png}
\caption{RWM +25361 ppm 1x scale}
\label{fig:RWM_25361ppm}
\end{subfigure} ~
\begin{subfigure}[t]{0.25\textwidth}
\centering
\includegraphics[width=0.75in]{RWMpost-cal-x5.png}
\caption{RWM +25361 ppm 5x scale}
\label{fig:RWMpost_cal_x5}
\end{subfigure}
\caption{PSK Digiscopes}
\label{fig:psk_digiscopes}
\end{figure}
\endlatexonly
<br>
You can see that my sound card requires a positive correction since the
slope is negative with a 0 ppm entry. The required correction of
+120 ppm was determined by guessing the needed correction to be close
to 1/10 of the -1000 ppm slope and then adjusting for a steady track
along the red graticule. The DCF-77 images were provided by
Walter, DL8FCL. The RWM images were provided by Andy G3TDJ.
<br>
You can left click on the tick line anytime you want to recenter the
signal. That will aid in making your visual observation.
<br>
When you are finished, the Rx corr Rate entry is the correct one for
your sound card. Save the configuration for future fldigi use.
<br>
Andy also provided information on the RWM transmissions:
<br>
RWM details extracted from <a class="moz-txt-link-freetext" href="http://www.irkutsk.com/radio/tis.htm">http://www.irkutsk.com/radio/tis.htm</a>
<br>
Station RWM - Main characteristics
<br>
Location: Russia, Moscow
<br>
55 degr. 44' North , 38 degr. 12' East
<br>
Standard frequencies : 4996, 9996 and 14996 kHz
<br>
Radiated power: 5kW on 4996 and 9996 kHz; 8kW on 14996 kHz
<br>
Period of operation: 24 hours per day, except 08.00-16.00 msk for maintenance as below:
<br>
on 4996 kHz : 1st wednesday of the 1st month of quater;
<br>
on 9996 kHz : 2nd wednesday of the 1st month of the quater;
<br>
on 14996 kHz : 3rd wednesday of each odd month;
<br>
Coverage: 20 degr. - 120 degr. East
<br>
35 degr. - 75 degr. North
<br>
Time signals A1X are given every second of 100 ms duration with a frequency
of 1 Hz. Minute pip is extended to 500 ms.
<br>
Hourly transmission schedule
<br>
m:s - m:s
00:00 - 07:55 -- MON signals (no modulation)
<br>
08:00 - 09:00 -- transmitter is signed off
<br>
09:00 - 10:00 -- station's identification is sent by Morse Code
<br>
10:00 - 19:55 -- A1X signals and identification of DUT1+dUT1
<br>
20:00 - 29:55 -- DXXXW signals
<br>
30:00 - 37:55 -- N0N signals (no modulation)
<br>
38:00 - 39:00 -- transmitter is signed off
<br>
39:00 - 40:00 -- station's identification is sent by Morse Code
<br>
40:00 - 49:55 -- A1X signals and identification of DUT1+dUT1
<br>
50:00 - 59:55 -- DXXXW signals
<br>
See \ref wwv_tx_mode "Transmitting Simulated WWV Timing Tone"
<br>
\ref digiscope_display_wwv_mode "Return to Top of Page"
<br>
\ref main_page "Return to Main Page"
*/