corrscope/ovgenpy/wave.py

111 wiersze
3.2 KiB
Python

from typing import Optional
import numpy as np
from ovgenpy.config import dataclass
from scipy.io import wavfile
# Internal class, not exposed via YAML
@dataclass
class _WaveConfig:
amplification: float = 1
FLOAT = np.single
class Wave:
def __init__(self, cfg: Optional[_WaveConfig], wave_path: str):
self.cfg = cfg or _WaveConfig()
self.smp_s, self.data = wavfile.read(wave_path, mmap=True) # type: int, np.ndarray
dtype = self.data.dtype
# Flatten stereo to mono
assert self.data.ndim in [1, 2]
if self.data.ndim == 2:
self.data = np.mean(self.data, axis=1, dtype=dtype)
self.nsamp = len(self.data)
# Calculate scaling factor.
def is_type(parent: type) -> bool:
return np.issubdtype(dtype, parent)
# Numpy types: https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
if is_type(np.integer):
max_int = np.iinfo(dtype).max + 1
assert max_int & (max_int - 1) == 0 # power of 2
if is_type(np.unsignedinteger):
self.center = max_int // 2
self.max_val = max_int // 2
elif is_type(np.signedinteger):
self.center = 0
self.max_val = max_int
elif is_type(np.floating):
self.center = 0
self.max_val = 1
else:
raise ValueError(f'unexpected wavfile dtype {dtype}')
def __getitem__(self, index: int) -> 'np.ndarray[FLOAT]':
""" Copies self.data[item], converted to a FLOAT within range [-1, 1). """
data = self.data[index].astype(FLOAT)
data -= self.center
data *= self.cfg.amplification / self.max_val
return data
def _get(self, begin: int, end: int, subsampling: int) -> 'np.ndarray[FLOAT]':
""" Copies self.data[begin:end] with zero-padding. """
if 0 <= begin and end <= self.nsamp:
return self[begin:end:subsampling]
region_len = end - begin
def constrain(idx):
delta = 0
if idx < 0:
delta = 0 - idx # delta > 0
assert idx + delta == 0
if idx > self.nsamp:
delta = self.nsamp - idx # delta < 0
assert idx + delta == self.nsamp
return delta
begin_index = constrain(begin)
end_index = region_len + constrain(end)
del end
data = self[begin+begin_index : begin+end_index : subsampling]
# Compute subsampled output ranges
out_len = region_len // subsampling
out_begin = begin_index // subsampling
out_end = out_begin + len(data)
# len(data) == ceil((end_index - begin_index) / subsampling)
out = np.zeros(out_len, dtype=FLOAT)
out[out_begin : out_end] = data
return out
def get_around(self, sample: int, region_nsamp: int, subsampling: int):
"""" Copies self.data[...] """
region_nsamp *= subsampling
end = sample + region_nsamp // 2
begin = end - region_nsamp
return self._get(begin, end, subsampling)
def get_s(self) -> float:
"""
:return: time (seconds)
"""
return self.nsamp / self.smp_s