kopia lustrzana https://github.com/corrscope/corrscope
159 wiersze
4.4 KiB
Python
159 wiersze
4.4 KiB
Python
from typing import Optional, List, Tuple
|
|
|
|
import numpy as np
|
|
from dataclasses import dataclass
|
|
from matplotlib import pyplot as plt
|
|
from matplotlib.axes import Axes
|
|
from matplotlib.figure import Figure
|
|
from matplotlib.lines import Line2D
|
|
|
|
from ovgenpy.util import ceildiv
|
|
|
|
|
|
@dataclass
|
|
class RendererConfig:
|
|
width: int
|
|
height: int
|
|
|
|
nrows: Optional[int] = None
|
|
ncols: Optional[int] = None
|
|
|
|
def __post_init__(self):
|
|
if not self.nrows:
|
|
self.nrows = None
|
|
if not self.ncols:
|
|
self.ncols = None
|
|
|
|
if self.nrows and self.ncols:
|
|
raise ValueError('cannot manually assign both nrows and ncols')
|
|
|
|
if not self.nrows and not self.ncols:
|
|
self.ncols = 1
|
|
|
|
|
|
class MatplotlibRenderer:
|
|
"""
|
|
If __init__ reads cfg, cfg cannot be hotswapped.
|
|
|
|
Reasons to hotswap cfg: RendererCfg:
|
|
- GUI preview size
|
|
- Changing layout
|
|
- Changing #smp drawn (samples_visible)
|
|
(see RendererCfg)
|
|
|
|
Original OVGen does not support hotswapping.
|
|
It disables changing options during rendering.
|
|
|
|
Reasons to hotswap trigger algorithms:
|
|
- changing scan_nsamp (cannot be hotswapped, since correlation buffer is incompatible)
|
|
So don't.
|
|
"""
|
|
|
|
DPI = 96
|
|
|
|
def __init__(self, cfg: RendererConfig, nplots: int):
|
|
self.cfg = cfg
|
|
self.nplots = nplots
|
|
self.fig: Figure = None
|
|
|
|
# Setup layout
|
|
# "ncols=1" is good for vertical layouts.
|
|
# But "nrows=X" is good for left-to-right grids.
|
|
|
|
self.nrows = 0
|
|
self.ncols = 0
|
|
|
|
# Flat array of nrows*ncols elements, ordered by cfg.rows_first.
|
|
self.axes: List[Axes] = None # set by set_layout()
|
|
self.lines: List[Line2D] = None # set by render_frame() first call
|
|
|
|
self.set_layout() # mutates self
|
|
|
|
def set_layout(self) -> None:
|
|
"""
|
|
Creates a flat array of Matplotlib Axes, with the new layout.
|
|
Opens a window showing the Figure (and Axes).
|
|
|
|
Inputs: self.cfg, self.fig
|
|
Outputs: self.nrows, self.ncols, self.axes
|
|
"""
|
|
|
|
self.nrows, self.ncols = self._calc_layout()
|
|
|
|
# Create Axes
|
|
# https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html
|
|
if self.fig:
|
|
plt.close(self.fig) # FIXME
|
|
|
|
axes2d: np.ndarray[Axes]
|
|
self.fig, axes2d = plt.subplots(
|
|
self.nrows, self.ncols,
|
|
squeeze=False,
|
|
# Remove gaps between Axes
|
|
gridspec_kw=dict(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
|
|
)
|
|
|
|
# remove Axis from Axes
|
|
for ax in axes2d.flatten():
|
|
ax.set_axis_off()
|
|
|
|
# if column major:
|
|
if self.cfg.ncols:
|
|
axes2d = axes2d.T
|
|
|
|
self.axes: List[Axes] = axes2d.flatten().tolist()[:self.nplots]
|
|
|
|
# Setup figure geometry
|
|
self.fig.set_dpi(self.DPI)
|
|
self.fig.set_size_inches(
|
|
self.cfg.width / self.DPI,
|
|
self.cfg.height / self.DPI
|
|
)
|
|
plt.show(block=False)
|
|
|
|
def _calc_layout(self) -> Tuple[int, int]:
|
|
"""
|
|
Inputs: self.cfg, self.waves
|
|
:return: (nrows, ncols)
|
|
"""
|
|
cfg = self.cfg
|
|
|
|
if cfg.nrows:
|
|
nrows = cfg.nrows
|
|
if nrows is None:
|
|
raise ValueError('invalid cfg: rows_first is True and nrows is None')
|
|
ncols = ceildiv(self.nplots, nrows)
|
|
else:
|
|
ncols = cfg.ncols
|
|
if ncols is None:
|
|
raise ValueError('invalid cfg: rows_first is False and ncols is None')
|
|
nrows = ceildiv(self.nplots, ncols)
|
|
|
|
return nrows, ncols
|
|
|
|
def render_frame(self, datas: List[np.ndarray]) -> None:
|
|
ndata = len(datas)
|
|
if self.nplots != ndata:
|
|
raise ValueError(
|
|
f'incorrect data to plot: {self.nplots} plots but {ndata} datas')
|
|
|
|
# Initialize axes and draw waveform data
|
|
if self.lines is None:
|
|
self.lines = []
|
|
for idx, data in enumerate(datas):
|
|
ax = self.axes[idx]
|
|
ax.set_xlim(0, len(data) - 1)
|
|
ax.set_ylim(-1, 1)
|
|
|
|
line = ax.plot(data)[0]
|
|
self.lines.append(line)
|
|
|
|
# Draw waveform data
|
|
else:
|
|
for idx, data in enumerate(datas):
|
|
line = self.lines[idx]
|
|
line.set_ydata(data)
|
|
|
|
self.fig.canvas.draw()
|
|
self.fig.canvas.flush_events()
|