from typing import Optional, List, Tuple, TYPE_CHECKING import matplotlib import numpy as np from ovgenpy.config import register_config from ovgenpy.outputs import RGB_DEPTH from ovgenpy.util import ceildiv matplotlib.use('agg') from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg if TYPE_CHECKING: from matplotlib.axes import Axes from matplotlib.figure import Figure from matplotlib.lines import Line2D @register_config class RendererConfig: width: int height: int nrows: Optional[int] = None ncols: Optional[int] = None def __post_init__(self): if not self.nrows: self.nrows = None if not self.ncols: self.ncols = None if self.nrows and self.ncols: raise ValueError('cannot manually assign both nrows and ncols') if not self.nrows and not self.ncols: self.ncols = 1 class MatplotlibRenderer: """ Renderer backend which takes data and produces images. Does not touch Wave or Channel. If __init__ reads cfg, cfg cannot be hotswapped. Reasons to hotswap cfg: RendererCfg: - GUI preview size - Changing layout - Changing #smp drawn (samples_visible) (see RendererCfg) Original OVGen does not support hotswapping. It disables changing options during rendering. Reasons to hotswap trigger algorithms: - changing scan_nsamp (cannot be hotswapped, since correlation buffer is incompatible) So don't. """ DPI = 96 def __init__(self, cfg: RendererConfig, nplots: int, create_window: bool): self.cfg = cfg self.nplots = nplots self.create_window = create_window # Setup layout # "ncols=1" is good for vertical layouts. # But "nrows=X" is good for left-to-right grids. self.nrows = 0 self.ncols = 0 # Flat array of nrows*ncols elements, ordered by cfg.rows_first. self.fig: 'Figure' = None self.axes: List['Axes'] = None # set by set_layout() self.lines: List['Line2D'] = None # set by render_frame() first call self.set_layout() # mutates self def set_layout(self) -> None: """ Creates a flat array of Matplotlib Axes, with the new layout. Opens a window showing the Figure (and Axes). Inputs: self.cfg, self.fig Outputs: self.nrows, self.ncols, self.axes """ self.nrows, self.ncols = self._calc_layout() # Create Axes # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html if self.fig: plt.close(self.fig) # FIXME axes2d: np.ndarray['Axes'] self.fig, axes2d = plt.subplots( self.nrows, self.ncols, squeeze=False, # Remove gaps between Axes gridspec_kw=dict(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) ) # remove Axis from Axes for ax in axes2d.flatten(): ax.set_axis_off() # if column major: if self.cfg.ncols: axes2d = axes2d.T self.axes: List['Axes'] = axes2d.flatten().tolist()[:self.nplots] # Setup figure geometry self.fig.set_dpi(self.DPI) self.fig.set_size_inches( self.cfg.width / self.DPI, self.cfg.height / self.DPI ) if self.create_window: plt.show(block=False) def _calc_layout(self) -> Tuple[int, int]: """ Inputs: self.cfg, self.waves :return: (nrows, ncols) """ cfg = self.cfg if cfg.nrows: nrows = cfg.nrows if nrows is None: raise ValueError('invalid cfg: rows_first is True and nrows is None') ncols = ceildiv(self.nplots, nrows) else: ncols = cfg.ncols if ncols is None: raise ValueError('invalid cfg: rows_first is False and ncols is None') nrows = ceildiv(self.nplots, ncols) return nrows, ncols def render_frame(self, datas: List[np.ndarray]) -> None: ndata = len(datas) if self.nplots != ndata: raise ValueError( f'incorrect data to plot: {self.nplots} plots but {ndata} datas') # Initialize axes and draw waveform data if self.lines is None: self.lines = [] for idx, data in enumerate(datas): ax = self.axes[idx] ax.set_xlim(0, len(data) - 1) ax.set_ylim(-1, 1) line = ax.plot(data)[0] self.lines.append(line) # Draw waveform data else: for idx, data in enumerate(datas): line = self.lines[idx] line.set_ydata(data) self.fig.canvas.draw() self.fig.canvas.flush_events() def get_frame(self) -> np.ndarray: """ Returns ndarray of shape w,h,3. """ canvas = self.fig.canvas # Agg is the default noninteractive backend except on OSX. # https://matplotlib.org/faq/usage_faq.html if not isinstance(canvas, FigureCanvasAgg): raise RuntimeError( f'oh shit, cannot read data from {type(canvas)} != FigureCanvasAgg') w = self.cfg.width h = self.cfg.height assert (w, h) == canvas.get_width_height() buffer_rgb: np.ndarray = np.frombuffer(canvas.tostring_rgb(), np.uint8) # TODO Pycharm type inference error np.reshape(buffer_rgb, (w, h, RGB_DEPTH)) assert buffer_rgb.size == w * h * RGB_DEPTH return buffer_rgb