kopia lustrzana https://github.com/corrscope/corrscope
Add pitch invariant trigger, set trigger_diameter=None (improves bass)
rodzic
da480dffe6
commit
3260104df2
|
@ -20,6 +20,7 @@ from corrscope.triggers import (
|
|||
CorrelationTriggerConfig,
|
||||
PerFrameCache,
|
||||
CorrelationTrigger,
|
||||
SpectrumConfig,
|
||||
)
|
||||
from corrscope.util import pushd, coalesce
|
||||
from corrscope.wave import Wave, Flatten
|
||||
|
@ -118,6 +119,7 @@ def default_config(**kwargs) -> Config:
|
|||
responsiveness=0.5,
|
||||
buffer_falloff=0.5,
|
||||
use_edge_trigger=False,
|
||||
pitch_invariance=SpectrumConfig()
|
||||
# Removed due to speed hit.
|
||||
# post=LocalPostTriggerConfig(strength=0.1),
|
||||
),
|
||||
|
|
|
@ -1,6 +1,18 @@
|
|||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Type, Tuple, Optional, ClassVar, Callable, Union
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Type,
|
||||
Tuple,
|
||||
Optional,
|
||||
ClassVar,
|
||||
Callable,
|
||||
Union,
|
||||
NewType,
|
||||
Sequence,
|
||||
List,
|
||||
Any,
|
||||
)
|
||||
|
||||
import attr
|
||||
import numpy as np
|
||||
|
@ -105,10 +117,184 @@ class PerFrameCache:
|
|||
# CorrelationTrigger
|
||||
|
||||
|
||||
class CorrelationTriggerConfig(ITriggerConfig):
|
||||
class SpectrumConfig(KeywordAttrs):
|
||||
"""
|
||||
# Rationale:
|
||||
If no basal frequency note-bands are to be truncated,
|
||||
the spectrum must have freq resolution
|
||||
`min_hz * (2 ** 1/notes_per_octave - 1)`.
|
||||
|
||||
At 20hz, 10 octaves, 12 notes/octave, this is 1.19Hz fft freqs.
|
||||
Our highest band must be
|
||||
`min_hz * 2**octaves`,
|
||||
leading to nearly 20K freqs, which produces an somewhat slow FFT.
|
||||
|
||||
So increase min_hz and decrease octaves and notes_per_octave.
|
||||
--------
|
||||
Using a Constant-Q transform may eliminate performance concerns?
|
||||
"""
|
||||
|
||||
# Spectrum X density
|
||||
min_hz: float = 20
|
||||
octaves: int = 8
|
||||
notes_per_octave: int = 6
|
||||
|
||||
# Spectrum Y power
|
||||
exponent: float = 1
|
||||
divide_by_freq: bool = True
|
||||
|
||||
# Spectral alignment and resampling
|
||||
pitch_estimate_boost: float = 1.2
|
||||
add_current_to_history: float = 0.1 # FIXME why does this exist?
|
||||
max_octaves_to_resample: float = 1.0
|
||||
|
||||
@property
|
||||
def max_notes_to_resample(self) -> int:
|
||||
return round(self.notes_per_octave * self.max_octaves_to_resample)
|
||||
|
||||
# Time-domain history parameters
|
||||
min_frames_between_recompute: int = 6
|
||||
frames_to_lookbehind: int = 2
|
||||
|
||||
|
||||
class DummySpectrum:
|
||||
# noinspection PyMethodMayBeStatic,PyUnusedLocal
|
||||
def calc_spectrum(self, data: np.ndarray) -> np.ndarray:
|
||||
return np.array([])
|
||||
|
||||
|
||||
# Indices are linearly spaced in FFT. Notes are exponentially spaced.
|
||||
# FFT is grouped into notes.
|
||||
FFTIndex = NewType("FFTIndex", int)
|
||||
# Very hacky and weird. Maybe it's not worth getting mypy to pass.
|
||||
if TYPE_CHECKING:
|
||||
FFTIndexArray = Any # mypy
|
||||
else:
|
||||
FFTIndexArray = "np.ndarray[FFTIndex]" # pycharm
|
||||
|
||||
|
||||
class LogFreqSpectrum(DummySpectrum):
|
||||
"""
|
||||
Invariants:
|
||||
- len(note_fenceposts) == n_fencepost
|
||||
|
||||
- rfft()[ : note_fenceposts[0]] is NOT used.
|
||||
- rfft()[note_fenceposts[-1] : ] is NOT used.
|
||||
- rfft()[note_fenceposts[0] : note_fenceposts[1]] becomes a note.
|
||||
"""
|
||||
|
||||
n_fftindex: FFTIndex # Determines frequency resolution, not range.
|
||||
note_fenceposts: FFTIndexArray
|
||||
n_fencepost: int
|
||||
|
||||
def __init__(self, scfg: SpectrumConfig, subsmp_s: float, dummy_data: np.ndarray):
|
||||
self.scfg = scfg
|
||||
|
||||
n_fftindex: FFTIndex = signal.next_fast_len(len(dummy_data))
|
||||
|
||||
# Increase n_fftindex until every note has nonzero width.
|
||||
while True:
|
||||
# Compute parameters
|
||||
self.min_hz = scfg.min_hz
|
||||
self.max_hz = self.min_hz * 2 ** scfg.octaves
|
||||
n_fencepost = scfg.notes_per_octave * scfg.octaves + 1
|
||||
|
||||
note_fenceposts_hz = np.geomspace(
|
||||
self.min_hz, self.max_hz, n_fencepost, dtype=FLOAT
|
||||
)
|
||||
|
||||
# Convert fenceposts to FFTIndex
|
||||
fft_from_hertz = n_fftindex / subsmp_s
|
||||
note_fenceposts: FFTIndexArray = (
|
||||
fft_from_hertz * note_fenceposts_hz
|
||||
).astype(np.int32)
|
||||
note_widths = np.diff(note_fenceposts)
|
||||
|
||||
if np.any(note_widths == 0):
|
||||
n_fftindex = signal.next_fast_len(n_fftindex + n_fftindex // 5 + 1)
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
self.n_fftindex = n_fftindex # Passed to rfft() to automatically zero-pad data.
|
||||
self.note_fenceposts = note_fenceposts
|
||||
self.n_fencepost = len(note_fenceposts)
|
||||
|
||||
def calc_spectrum(self, data: np.ndarray) -> np.ndarray:
|
||||
""" Unfortunately converting to FLOAT (single) adds too much overhead.
|
||||
|
||||
Input: Time-domain signal to be analyzed.
|
||||
Output: Frequency-domain spectrum with exponentially-spaced notes.
|
||||
- ret[note] = nonnegative float.
|
||||
"""
|
||||
scfg = self.scfg
|
||||
|
||||
# Compute FFT spectrum[freq]
|
||||
spectrum = np.fft.rfft(data, self.n_fftindex)
|
||||
spectrum = abs(spectrum)
|
||||
if scfg.exponent != 1:
|
||||
spectrum **= scfg.exponent
|
||||
|
||||
# Compute energy of each note
|
||||
# spectrum_per_note[note] = np.ndarray[float]
|
||||
spectrum_per_note: List[np.ndarray] = split(spectrum, self.note_fenceposts)
|
||||
|
||||
# energy_per_note[note] = float
|
||||
energy_per_note: np.ndarray
|
||||
|
||||
# np.add.reduce is much faster than np.sum/mean.
|
||||
if scfg.divide_by_freq:
|
||||
energy_per_note = np.array(
|
||||
[np.add.reduce(region) / len(region) for region in spectrum_per_note]
|
||||
)
|
||||
else:
|
||||
energy_per_note = np.array(
|
||||
[np.add.reduce(region) for region in spectrum_per_note]
|
||||
)
|
||||
|
||||
assert len(energy_per_note) == self.n_fencepost - 1
|
||||
return energy_per_note
|
||||
|
||||
|
||||
def split(data: np.ndarray, fenceposts: Sequence[FFTIndex]) -> List[np.ndarray]:
|
||||
""" Based off np.split(), but faster.
|
||||
Unlike np.split, does not include data before fenceposts[0] or after fenceposts[-1].
|
||||
"""
|
||||
sub_arys = []
|
||||
ndata = len(data)
|
||||
for i in range(len(fenceposts) - 1):
|
||||
st = fenceposts[i]
|
||||
end = fenceposts[i + 1]
|
||||
if not st < ndata:
|
||||
break
|
||||
region = data[st:end]
|
||||
sub_arys.append(region)
|
||||
|
||||
return sub_arys
|
||||
|
||||
|
||||
class CircularArray:
|
||||
def __init__(self, size: int, *dims: int):
|
||||
self.size = size
|
||||
self.buf = np.zeros((size, *dims))
|
||||
self.index = 0
|
||||
|
||||
def push(self, arr: np.ndarray) -> None:
|
||||
if self.size == 0:
|
||||
return
|
||||
self.buf[self.index] = arr
|
||||
self.index = (self.index + 1) % self.size
|
||||
|
||||
def peek(self) -> np.ndarray:
|
||||
"""Return is borrowed from self.buf.
|
||||
Do NOT push to self while borrow is alive."""
|
||||
return self.buf[self.index]
|
||||
|
||||
|
||||
class CorrelationTriggerConfig(ITriggerConfig, always_dump="pitch_invariance"):
|
||||
# get_trigger
|
||||
edge_strength: float
|
||||
trigger_diameter: float = 0.5
|
||||
trigger_diameter: Optional[float] = None
|
||||
|
||||
trigger_falloff: Tuple[float, float] = (4.0, 1.0)
|
||||
recalc_semitones: float = 1.0
|
||||
|
@ -118,6 +304,9 @@ class CorrelationTriggerConfig(ITriggerConfig):
|
|||
responsiveness: float
|
||||
buffer_falloff: float # Gaussian std = wave_period * buffer_falloff
|
||||
|
||||
# Pitch invariance = compute spectrum.
|
||||
pitch_invariance: Optional["SpectrumConfig"] = None
|
||||
|
||||
# region Legacy Aliases
|
||||
trigger_strength = Alias("edge_strength")
|
||||
falloff_width = Alias("buffer_falloff")
|
||||
|
@ -152,6 +341,10 @@ class CorrelationTriggerConfig(ITriggerConfig):
|
|||
class CorrelationTrigger(Trigger):
|
||||
cfg: CorrelationTriggerConfig
|
||||
|
||||
@property
|
||||
def scfg(self) -> SpectrumConfig:
|
||||
return self.cfg.pitch_invariance
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
"""
|
||||
Correlation-based trigger which looks at a window of `trigger_tsamp` samples.
|
||||
|
@ -181,6 +374,24 @@ class CorrelationTrigger(Trigger):
|
|||
self._prev_period: Optional[int] = None
|
||||
self._prev_window: Optional[np.ndarray] = None
|
||||
|
||||
# (mutable) Log-scaled spectrum
|
||||
self.frames_since_spectrum = 0
|
||||
|
||||
if self.scfg:
|
||||
self._spectrum_calc = LogFreqSpectrum(
|
||||
scfg=self.scfg,
|
||||
subsmp_s=self._wave.smp_s / self._stride,
|
||||
dummy_data=self._buffer,
|
||||
)
|
||||
self._spectrum = self._spectrum_calc.calc_spectrum(self._buffer)
|
||||
self.history = CircularArray(
|
||||
self.scfg.frames_to_lookbehind, self._buffer_nsamp
|
||||
)
|
||||
else:
|
||||
self._spectrum_calc = DummySpectrum()
|
||||
self._spectrum = np.array([0])
|
||||
self.history = CircularArray(0, self._buffer_nsamp)
|
||||
|
||||
def _calc_data_taper(self) -> np.ndarray:
|
||||
""" Input data window. Zeroes out all data older than 1 frame old.
|
||||
See https://github.com/nyanpasu64/corrscope/wiki/Correlation-Trigger
|
||||
|
@ -242,6 +453,7 @@ class CorrelationTrigger(Trigger):
|
|||
# begin per-frame
|
||||
def get_trigger(self, index: int, cache: "PerFrameCache") -> int:
|
||||
N = self._buffer_nsamp
|
||||
cfg = self.cfg
|
||||
|
||||
# Get data
|
||||
stride = self._stride
|
||||
|
@ -253,50 +465,39 @@ class CorrelationTrigger(Trigger):
|
|||
period = get_period(data)
|
||||
cache.period = period * stride
|
||||
|
||||
if self._is_window_invalid(period):
|
||||
diameter, falloff = [round(period * x) for x in self.cfg.trigger_falloff]
|
||||
semitones = self._is_window_invalid(period)
|
||||
# If pitch changed...
|
||||
if semitones:
|
||||
diameter, falloff = [round(period * x) for x in cfg.trigger_falloff]
|
||||
falloff_window = cosine_flat(N, diameter, falloff)
|
||||
window = np.minimum(falloff_window, self._data_taper)
|
||||
|
||||
# If pitch invariance enabled, rescale buffer to match data's pitch.
|
||||
if self.scfg and (data != 0).any():
|
||||
if isinstance(semitones, float):
|
||||
peak_semitones = semitones
|
||||
else:
|
||||
peak_semitones = None
|
||||
self.spectrum_rescale_buffer(data, peak_semitones)
|
||||
|
||||
self._prev_period = period
|
||||
self._prev_window = window
|
||||
else:
|
||||
window = self._prev_window
|
||||
|
||||
self.history.push(data)
|
||||
data *= window
|
||||
|
||||
# prev_buffer
|
||||
prev_buffer = self._windowed_step + self._buffer
|
||||
prev_buffer: np.ndarray = self._buffer.copy()
|
||||
prev_buffer += self._windowed_step
|
||||
|
||||
# Calculate correlation
|
||||
"""
|
||||
If offset < optimal, we need to `offset += positive`.
|
||||
- The peak will appear near the right of `data`.
|
||||
if self.cfg.trigger_diameter is not None:
|
||||
radius = round(N * self.cfg.trigger_diameter / 2)
|
||||
else:
|
||||
radius = None
|
||||
|
||||
Either we must slide prev_buffer to the right:
|
||||
- correlate(data, prev_buffer)
|
||||
- trigger = offset + peak_offset
|
||||
|
||||
Or we must slide data to the left (by sliding offset to the right):
|
||||
- correlate(prev_buffer, data)
|
||||
- trigger = offset - peak_offset
|
||||
"""
|
||||
corr = signal.correlate(data, prev_buffer) # returns double, not single/FLOAT
|
||||
assert len(corr) == 2 * N - 1
|
||||
|
||||
# Find optimal offset (within trigger_diameter, default=±N/4)
|
||||
mid = N - 1
|
||||
radius = round(N * self.cfg.trigger_diameter / 2)
|
||||
|
||||
left = mid - radius
|
||||
right = mid + radius + 1
|
||||
|
||||
corr = corr[left:right]
|
||||
mid = mid - left
|
||||
|
||||
# argmax(corr) == mid + peak_offset == (data >> peak_offset)
|
||||
# peak_offset == argmax(corr) - mid
|
||||
peak_offset = np.argmax(corr) - mid # type: int
|
||||
peak_offset = self.correlate_offset(data, prev_buffer, radius)
|
||||
trigger = index + (stride * peak_offset)
|
||||
|
||||
# Apply post trigger (before updating correlation buffer)
|
||||
|
@ -306,11 +507,108 @@ class CorrelationTrigger(Trigger):
|
|||
# Update correlation buffer (distinct from visible area)
|
||||
aligned = self._wave.get_around(trigger, self._buffer_nsamp, stride)
|
||||
self._update_buffer(aligned, cache)
|
||||
self.frames_since_spectrum += 1
|
||||
|
||||
return trigger
|
||||
|
||||
def _is_window_invalid(self, period: int) -> bool:
|
||||
""" Returns True if pitch has changed more than `recalc_semitones`. """
|
||||
def spectrum_rescale_buffer(
|
||||
self, data: np.ndarray, peak_semitones: Optional[float]
|
||||
) -> None:
|
||||
"""Rewrites self._spectrum, and possibly rescales self._buffer."""
|
||||
|
||||
scfg = self.scfg
|
||||
N = self._buffer_nsamp
|
||||
|
||||
if self.frames_since_spectrum < self.scfg.min_frames_between_recompute:
|
||||
return
|
||||
self.frames_since_spectrum = 0
|
||||
|
||||
spectrum = self._spectrum_calc.calc_spectrum(data)
|
||||
normalize_buffer(spectrum)
|
||||
|
||||
# Don't normalize self._spectrum. It was already normalized when being assigned.
|
||||
prev_spectrum = self._spectrum_calc.calc_spectrum(self.history.peek())
|
||||
prev_spectrum += scfg.add_current_to_history * spectrum
|
||||
|
||||
# rewrite spectrum
|
||||
self._spectrum = spectrum
|
||||
|
||||
assert not np.any(np.isnan(spectrum))
|
||||
|
||||
# Find spectral correlation peak,
|
||||
# but prioritize "changing pitch by ???".
|
||||
if peak_semitones is not None:
|
||||
boost_x = int(round(peak_semitones / 12 * scfg.notes_per_octave))
|
||||
boost_y: float = scfg.pitch_estimate_boost
|
||||
else:
|
||||
boost_x = 0
|
||||
boost_y = 1.0
|
||||
|
||||
# If we want to double pitch...
|
||||
resample_notes = self.correlate_offset(
|
||||
spectrum,
|
||||
prev_spectrum,
|
||||
scfg.max_notes_to_resample,
|
||||
boost_x=boost_x,
|
||||
boost_y=boost_y,
|
||||
)
|
||||
if resample_notes != 0:
|
||||
# we must divide sampling rate by 2.
|
||||
new_len = int(round(N / 2 ** (resample_notes / scfg.notes_per_octave)))
|
||||
|
||||
# Copy+resample self._buffer.
|
||||
self._buffer = np.interp(
|
||||
np.linspace(0, 1, new_len), np.linspace(0, 1, N), self._buffer
|
||||
)
|
||||
# assert len(self._buffer) == new_len
|
||||
self._buffer = midpad(self._buffer, N)
|
||||
|
||||
@staticmethod
|
||||
def correlate_offset(
|
||||
data: np.ndarray,
|
||||
prev_buffer: np.ndarray,
|
||||
radius: Optional[int],
|
||||
boost_x: int = 0,
|
||||
boost_y: float = 1.0,
|
||||
) -> int:
|
||||
"""
|
||||
This is confusing.
|
||||
|
||||
If data index < optimal, data will be too far to the right,
|
||||
and we need to `index += positive`.
|
||||
- The peak will appear near the right of `data`.
|
||||
|
||||
Either we must slide prev_buffer to the right,
|
||||
or we must slide data to the left (by sliding index to the right):
|
||||
- correlate(data, prev_buffer)
|
||||
- trigger = index + peak_offset
|
||||
"""
|
||||
N = len(data)
|
||||
corr = signal.correlate(data, prev_buffer) # returns double, not single/FLOAT
|
||||
Ncorr = 2 * N - 1
|
||||
assert len(corr) == Ncorr
|
||||
|
||||
# Find optimal offset
|
||||
mid = N - 1
|
||||
|
||||
if radius is not None:
|
||||
left = max(mid - radius, 0)
|
||||
right = min(mid + radius + 1, Ncorr)
|
||||
|
||||
corr = corr[left:right]
|
||||
mid = mid - left
|
||||
|
||||
# Prioritize part of it.
|
||||
corr[mid + boost_x : mid + boost_x + 1] *= boost_y
|
||||
|
||||
# argmax(corr) == mid + peak_offset == (data >> peak_offset)
|
||||
# peak_offset == argmax(corr) - mid
|
||||
peak_offset = np.argmax(corr) - mid # type: int
|
||||
return peak_offset
|
||||
|
||||
def _is_window_invalid(self, period: int) -> Union[bool, float]:
|
||||
""" Returns number of semitones,
|
||||
if pitch has changed more than `recalc_semitones`. """
|
||||
|
||||
prev = self._prev_period
|
||||
|
||||
|
@ -319,12 +617,12 @@ class CorrelationTrigger(Trigger):
|
|||
elif prev * period == 0:
|
||||
return prev != period
|
||||
else:
|
||||
semitones = abs(np.log(period / prev) / np.log(2) * 12)
|
||||
|
||||
# If period doubles, semitones are -12.
|
||||
semitones = np.log(period / prev) / np.log(2) * -12
|
||||
# If semitones == recalc_semitones == 0, do NOT recalc.
|
||||
if semitones <= self.cfg.recalc_semitones:
|
||||
if abs(semitones) <= self.cfg.recalc_semitones:
|
||||
return False
|
||||
return True
|
||||
return semitones
|
||||
|
||||
def _update_buffer(self, data: np.ndarray, cache: PerFrameCache) -> None:
|
||||
"""
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
import attr
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pytest
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
from pytest_cases import pytest_fixture_plus
|
||||
|
||||
from corrscope import triggers
|
||||
from corrscope.triggers import (
|
||||
|
@ -11,6 +13,7 @@ from corrscope.triggers import (
|
|||
PerFrameCache,
|
||||
ZeroCrossingTriggerConfig,
|
||||
LocalPostTriggerConfig,
|
||||
SpectrumConfig,
|
||||
)
|
||||
from corrscope.wave import Wave
|
||||
|
||||
|
@ -25,10 +28,16 @@ def cfg_template(**kwargs) -> CorrelationTriggerConfig:
|
|||
return attr.evolve(cfg, **kwargs)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", params=[False, True])
|
||||
def cfg(request):
|
||||
use_edge_trigger = request.param
|
||||
return cfg_template(use_edge_trigger=use_edge_trigger)
|
||||
@pytest_fixture_plus
|
||||
@pytest.mark.parametrize("use_edge_trigger", [False, True])
|
||||
@pytest.mark.parametrize("trigger_diameter", [None, 0.5])
|
||||
@pytest.mark.parametrize("pitch_invariance", [None, SpectrumConfig()])
|
||||
def cfg(use_edge_trigger, trigger_diameter, pitch_invariance):
|
||||
return cfg_template(
|
||||
use_edge_trigger=use_edge_trigger,
|
||||
trigger_diameter=trigger_diameter,
|
||||
pitch_invariance=pitch_invariance,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
|
@ -177,6 +186,43 @@ def test_trigger_should_recalc_window():
|
|||
assert trigger._is_window_invalid(x), x
|
||||
|
||||
|
||||
# Test pitch-invariant triggering using spectrum
|
||||
def test_correlate_offset():
|
||||
"""
|
||||
Catches bug where writing N instead of Ncorr
|
||||
prevented function from returning positive numbers.
|
||||
"""
|
||||
|
||||
np.random.seed(31337)
|
||||
correlate_offset = CorrelationTrigger.correlate_offset
|
||||
|
||||
# Ensure autocorrelation on random data returns peak at 0.
|
||||
N = 100
|
||||
spectrum = np.random.random(N)
|
||||
assert correlate_offset(spectrum, spectrum, 12) == 0
|
||||
|
||||
# Ensure cross-correlation of time-shifted impulses works.
|
||||
# Assume wave where y=[i==99].
|
||||
wave = np.eye(N)[::-1]
|
||||
# Taking a slice beginning at index i will produce an impulse at 99-i.
|
||||
left = wave[30]
|
||||
right = wave[40]
|
||||
|
||||
# We need to slide `left` to the right by 10 samples, and vice versa.
|
||||
for radius in [None, 12]:
|
||||
assert correlate_offset(data=left, prev_buffer=right, radius=radius) == 10
|
||||
assert correlate_offset(data=right, prev_buffer=left, radius=radius) == -10
|
||||
|
||||
# The correlation peak at zero-offset is small enough for boost_x to be returned.
|
||||
boost_y = 1.5
|
||||
ones = np.ones(N)
|
||||
for boost_x in [6, -6]:
|
||||
assert (
|
||||
correlate_offset(ones, ones, radius=9, boost_x=boost_x, boost_y=boost_y)
|
||||
== boost_x
|
||||
)
|
||||
|
||||
|
||||
# Test the ability to load legacy TriggerConfig
|
||||
|
||||
|
||||
|
|
Ładowanie…
Reference in New Issue