Add pitch invariant trigger, set trigger_diameter=None (improves bass)

pull/357/head
nyanpasu64 2019-02-25 21:49:42 -08:00
rodzic da480dffe6
commit 3260104df2
3 zmienionych plików z 390 dodań i 44 usunięć

Wyświetl plik

@ -20,6 +20,7 @@ from corrscope.triggers import (
CorrelationTriggerConfig,
PerFrameCache,
CorrelationTrigger,
SpectrumConfig,
)
from corrscope.util import pushd, coalesce
from corrscope.wave import Wave, Flatten
@ -118,6 +119,7 @@ def default_config(**kwargs) -> Config:
responsiveness=0.5,
buffer_falloff=0.5,
use_edge_trigger=False,
pitch_invariance=SpectrumConfig()
# Removed due to speed hit.
# post=LocalPostTriggerConfig(strength=0.1),
),

Wyświetl plik

@ -1,6 +1,18 @@
import warnings
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Type, Tuple, Optional, ClassVar, Callable, Union
from typing import (
TYPE_CHECKING,
Type,
Tuple,
Optional,
ClassVar,
Callable,
Union,
NewType,
Sequence,
List,
Any,
)
import attr
import numpy as np
@ -105,10 +117,184 @@ class PerFrameCache:
# CorrelationTrigger
class CorrelationTriggerConfig(ITriggerConfig):
class SpectrumConfig(KeywordAttrs):
"""
# Rationale:
If no basal frequency note-bands are to be truncated,
the spectrum must have freq resolution
`min_hz * (2 ** 1/notes_per_octave - 1)`.
At 20hz, 10 octaves, 12 notes/octave, this is 1.19Hz fft freqs.
Our highest band must be
`min_hz * 2**octaves`,
leading to nearly 20K freqs, which produces an somewhat slow FFT.
So increase min_hz and decrease octaves and notes_per_octave.
--------
Using a Constant-Q transform may eliminate performance concerns?
"""
# Spectrum X density
min_hz: float = 20
octaves: int = 8
notes_per_octave: int = 6
# Spectrum Y power
exponent: float = 1
divide_by_freq: bool = True
# Spectral alignment and resampling
pitch_estimate_boost: float = 1.2
add_current_to_history: float = 0.1 # FIXME why does this exist?
max_octaves_to_resample: float = 1.0
@property
def max_notes_to_resample(self) -> int:
return round(self.notes_per_octave * self.max_octaves_to_resample)
# Time-domain history parameters
min_frames_between_recompute: int = 6
frames_to_lookbehind: int = 2
class DummySpectrum:
# noinspection PyMethodMayBeStatic,PyUnusedLocal
def calc_spectrum(self, data: np.ndarray) -> np.ndarray:
return np.array([])
# Indices are linearly spaced in FFT. Notes are exponentially spaced.
# FFT is grouped into notes.
FFTIndex = NewType("FFTIndex", int)
# Very hacky and weird. Maybe it's not worth getting mypy to pass.
if TYPE_CHECKING:
FFTIndexArray = Any # mypy
else:
FFTIndexArray = "np.ndarray[FFTIndex]" # pycharm
class LogFreqSpectrum(DummySpectrum):
"""
Invariants:
- len(note_fenceposts) == n_fencepost
- rfft()[ : note_fenceposts[0]] is NOT used.
- rfft()[note_fenceposts[-1] : ] is NOT used.
- rfft()[note_fenceposts[0] : note_fenceposts[1]] becomes a note.
"""
n_fftindex: FFTIndex # Determines frequency resolution, not range.
note_fenceposts: FFTIndexArray
n_fencepost: int
def __init__(self, scfg: SpectrumConfig, subsmp_s: float, dummy_data: np.ndarray):
self.scfg = scfg
n_fftindex: FFTIndex = signal.next_fast_len(len(dummy_data))
# Increase n_fftindex until every note has nonzero width.
while True:
# Compute parameters
self.min_hz = scfg.min_hz
self.max_hz = self.min_hz * 2 ** scfg.octaves
n_fencepost = scfg.notes_per_octave * scfg.octaves + 1
note_fenceposts_hz = np.geomspace(
self.min_hz, self.max_hz, n_fencepost, dtype=FLOAT
)
# Convert fenceposts to FFTIndex
fft_from_hertz = n_fftindex / subsmp_s
note_fenceposts: FFTIndexArray = (
fft_from_hertz * note_fenceposts_hz
).astype(np.int32)
note_widths = np.diff(note_fenceposts)
if np.any(note_widths == 0):
n_fftindex = signal.next_fast_len(n_fftindex + n_fftindex // 5 + 1)
continue
else:
break
self.n_fftindex = n_fftindex # Passed to rfft() to automatically zero-pad data.
self.note_fenceposts = note_fenceposts
self.n_fencepost = len(note_fenceposts)
def calc_spectrum(self, data: np.ndarray) -> np.ndarray:
""" Unfortunately converting to FLOAT (single) adds too much overhead.
Input: Time-domain signal to be analyzed.
Output: Frequency-domain spectrum with exponentially-spaced notes.
- ret[note] = nonnegative float.
"""
scfg = self.scfg
# Compute FFT spectrum[freq]
spectrum = np.fft.rfft(data, self.n_fftindex)
spectrum = abs(spectrum)
if scfg.exponent != 1:
spectrum **= scfg.exponent
# Compute energy of each note
# spectrum_per_note[note] = np.ndarray[float]
spectrum_per_note: List[np.ndarray] = split(spectrum, self.note_fenceposts)
# energy_per_note[note] = float
energy_per_note: np.ndarray
# np.add.reduce is much faster than np.sum/mean.
if scfg.divide_by_freq:
energy_per_note = np.array(
[np.add.reduce(region) / len(region) for region in spectrum_per_note]
)
else:
energy_per_note = np.array(
[np.add.reduce(region) for region in spectrum_per_note]
)
assert len(energy_per_note) == self.n_fencepost - 1
return energy_per_note
def split(data: np.ndarray, fenceposts: Sequence[FFTIndex]) -> List[np.ndarray]:
""" Based off np.split(), but faster.
Unlike np.split, does not include data before fenceposts[0] or after fenceposts[-1].
"""
sub_arys = []
ndata = len(data)
for i in range(len(fenceposts) - 1):
st = fenceposts[i]
end = fenceposts[i + 1]
if not st < ndata:
break
region = data[st:end]
sub_arys.append(region)
return sub_arys
class CircularArray:
def __init__(self, size: int, *dims: int):
self.size = size
self.buf = np.zeros((size, *dims))
self.index = 0
def push(self, arr: np.ndarray) -> None:
if self.size == 0:
return
self.buf[self.index] = arr
self.index = (self.index + 1) % self.size
def peek(self) -> np.ndarray:
"""Return is borrowed from self.buf.
Do NOT push to self while borrow is alive."""
return self.buf[self.index]
class CorrelationTriggerConfig(ITriggerConfig, always_dump="pitch_invariance"):
# get_trigger
edge_strength: float
trigger_diameter: float = 0.5
trigger_diameter: Optional[float] = None
trigger_falloff: Tuple[float, float] = (4.0, 1.0)
recalc_semitones: float = 1.0
@ -118,6 +304,9 @@ class CorrelationTriggerConfig(ITriggerConfig):
responsiveness: float
buffer_falloff: float # Gaussian std = wave_period * buffer_falloff
# Pitch invariance = compute spectrum.
pitch_invariance: Optional["SpectrumConfig"] = None
# region Legacy Aliases
trigger_strength = Alias("edge_strength")
falloff_width = Alias("buffer_falloff")
@ -152,6 +341,10 @@ class CorrelationTriggerConfig(ITriggerConfig):
class CorrelationTrigger(Trigger):
cfg: CorrelationTriggerConfig
@property
def scfg(self) -> SpectrumConfig:
return self.cfg.pitch_invariance
def __init__(self, *args, **kwargs):
"""
Correlation-based trigger which looks at a window of `trigger_tsamp` samples.
@ -181,6 +374,24 @@ class CorrelationTrigger(Trigger):
self._prev_period: Optional[int] = None
self._prev_window: Optional[np.ndarray] = None
# (mutable) Log-scaled spectrum
self.frames_since_spectrum = 0
if self.scfg:
self._spectrum_calc = LogFreqSpectrum(
scfg=self.scfg,
subsmp_s=self._wave.smp_s / self._stride,
dummy_data=self._buffer,
)
self._spectrum = self._spectrum_calc.calc_spectrum(self._buffer)
self.history = CircularArray(
self.scfg.frames_to_lookbehind, self._buffer_nsamp
)
else:
self._spectrum_calc = DummySpectrum()
self._spectrum = np.array([0])
self.history = CircularArray(0, self._buffer_nsamp)
def _calc_data_taper(self) -> np.ndarray:
""" Input data window. Zeroes out all data older than 1 frame old.
See https://github.com/nyanpasu64/corrscope/wiki/Correlation-Trigger
@ -242,6 +453,7 @@ class CorrelationTrigger(Trigger):
# begin per-frame
def get_trigger(self, index: int, cache: "PerFrameCache") -> int:
N = self._buffer_nsamp
cfg = self.cfg
# Get data
stride = self._stride
@ -253,50 +465,39 @@ class CorrelationTrigger(Trigger):
period = get_period(data)
cache.period = period * stride
if self._is_window_invalid(period):
diameter, falloff = [round(period * x) for x in self.cfg.trigger_falloff]
semitones = self._is_window_invalid(period)
# If pitch changed...
if semitones:
diameter, falloff = [round(period * x) for x in cfg.trigger_falloff]
falloff_window = cosine_flat(N, diameter, falloff)
window = np.minimum(falloff_window, self._data_taper)
# If pitch invariance enabled, rescale buffer to match data's pitch.
if self.scfg and (data != 0).any():
if isinstance(semitones, float):
peak_semitones = semitones
else:
peak_semitones = None
self.spectrum_rescale_buffer(data, peak_semitones)
self._prev_period = period
self._prev_window = window
else:
window = self._prev_window
self.history.push(data)
data *= window
# prev_buffer
prev_buffer = self._windowed_step + self._buffer
prev_buffer: np.ndarray = self._buffer.copy()
prev_buffer += self._windowed_step
# Calculate correlation
"""
If offset < optimal, we need to `offset += positive`.
- The peak will appear near the right of `data`.
if self.cfg.trigger_diameter is not None:
radius = round(N * self.cfg.trigger_diameter / 2)
else:
radius = None
Either we must slide prev_buffer to the right:
- correlate(data, prev_buffer)
- trigger = offset + peak_offset
Or we must slide data to the left (by sliding offset to the right):
- correlate(prev_buffer, data)
- trigger = offset - peak_offset
"""
corr = signal.correlate(data, prev_buffer) # returns double, not single/FLOAT
assert len(corr) == 2 * N - 1
# Find optimal offset (within trigger_diameter, default=±N/4)
mid = N - 1
radius = round(N * self.cfg.trigger_diameter / 2)
left = mid - radius
right = mid + radius + 1
corr = corr[left:right]
mid = mid - left
# argmax(corr) == mid + peak_offset == (data >> peak_offset)
# peak_offset == argmax(corr) - mid
peak_offset = np.argmax(corr) - mid # type: int
peak_offset = self.correlate_offset(data, prev_buffer, radius)
trigger = index + (stride * peak_offset)
# Apply post trigger (before updating correlation buffer)
@ -306,11 +507,108 @@ class CorrelationTrigger(Trigger):
# Update correlation buffer (distinct from visible area)
aligned = self._wave.get_around(trigger, self._buffer_nsamp, stride)
self._update_buffer(aligned, cache)
self.frames_since_spectrum += 1
return trigger
def _is_window_invalid(self, period: int) -> bool:
""" Returns True if pitch has changed more than `recalc_semitones`. """
def spectrum_rescale_buffer(
self, data: np.ndarray, peak_semitones: Optional[float]
) -> None:
"""Rewrites self._spectrum, and possibly rescales self._buffer."""
scfg = self.scfg
N = self._buffer_nsamp
if self.frames_since_spectrum < self.scfg.min_frames_between_recompute:
return
self.frames_since_spectrum = 0
spectrum = self._spectrum_calc.calc_spectrum(data)
normalize_buffer(spectrum)
# Don't normalize self._spectrum. It was already normalized when being assigned.
prev_spectrum = self._spectrum_calc.calc_spectrum(self.history.peek())
prev_spectrum += scfg.add_current_to_history * spectrum
# rewrite spectrum
self._spectrum = spectrum
assert not np.any(np.isnan(spectrum))
# Find spectral correlation peak,
# but prioritize "changing pitch by ???".
if peak_semitones is not None:
boost_x = int(round(peak_semitones / 12 * scfg.notes_per_octave))
boost_y: float = scfg.pitch_estimate_boost
else:
boost_x = 0
boost_y = 1.0
# If we want to double pitch...
resample_notes = self.correlate_offset(
spectrum,
prev_spectrum,
scfg.max_notes_to_resample,
boost_x=boost_x,
boost_y=boost_y,
)
if resample_notes != 0:
# we must divide sampling rate by 2.
new_len = int(round(N / 2 ** (resample_notes / scfg.notes_per_octave)))
# Copy+resample self._buffer.
self._buffer = np.interp(
np.linspace(0, 1, new_len), np.linspace(0, 1, N), self._buffer
)
# assert len(self._buffer) == new_len
self._buffer = midpad(self._buffer, N)
@staticmethod
def correlate_offset(
data: np.ndarray,
prev_buffer: np.ndarray,
radius: Optional[int],
boost_x: int = 0,
boost_y: float = 1.0,
) -> int:
"""
This is confusing.
If data index < optimal, data will be too far to the right,
and we need to `index += positive`.
- The peak will appear near the right of `data`.
Either we must slide prev_buffer to the right,
or we must slide data to the left (by sliding index to the right):
- correlate(data, prev_buffer)
- trigger = index + peak_offset
"""
N = len(data)
corr = signal.correlate(data, prev_buffer) # returns double, not single/FLOAT
Ncorr = 2 * N - 1
assert len(corr) == Ncorr
# Find optimal offset
mid = N - 1
if radius is not None:
left = max(mid - radius, 0)
right = min(mid + radius + 1, Ncorr)
corr = corr[left:right]
mid = mid - left
# Prioritize part of it.
corr[mid + boost_x : mid + boost_x + 1] *= boost_y
# argmax(corr) == mid + peak_offset == (data >> peak_offset)
# peak_offset == argmax(corr) - mid
peak_offset = np.argmax(corr) - mid # type: int
return peak_offset
def _is_window_invalid(self, period: int) -> Union[bool, float]:
""" Returns number of semitones,
if pitch has changed more than `recalc_semitones`. """
prev = self._prev_period
@ -319,12 +617,12 @@ class CorrelationTrigger(Trigger):
elif prev * period == 0:
return prev != period
else:
semitones = abs(np.log(period / prev) / np.log(2) * 12)
# If period doubles, semitones are -12.
semitones = np.log(period / prev) / np.log(2) * -12
# If semitones == recalc_semitones == 0, do NOT recalc.
if semitones <= self.cfg.recalc_semitones:
if abs(semitones) <= self.cfg.recalc_semitones:
return False
return True
return semitones
def _update_buffer(self, data: np.ndarray, cache: PerFrameCache) -> None:
"""

Wyświetl plik

@ -1,8 +1,10 @@
import attr
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pytest_cases import pytest_fixture_plus
from corrscope import triggers
from corrscope.triggers import (
@ -11,6 +13,7 @@ from corrscope.triggers import (
PerFrameCache,
ZeroCrossingTriggerConfig,
LocalPostTriggerConfig,
SpectrumConfig,
)
from corrscope.wave import Wave
@ -25,10 +28,16 @@ def cfg_template(**kwargs) -> CorrelationTriggerConfig:
return attr.evolve(cfg, **kwargs)
@pytest.fixture(scope="session", params=[False, True])
def cfg(request):
use_edge_trigger = request.param
return cfg_template(use_edge_trigger=use_edge_trigger)
@pytest_fixture_plus
@pytest.mark.parametrize("use_edge_trigger", [False, True])
@pytest.mark.parametrize("trigger_diameter", [None, 0.5])
@pytest.mark.parametrize("pitch_invariance", [None, SpectrumConfig()])
def cfg(use_edge_trigger, trigger_diameter, pitch_invariance):
return cfg_template(
use_edge_trigger=use_edge_trigger,
trigger_diameter=trigger_diameter,
pitch_invariance=pitch_invariance,
)
@pytest.fixture(
@ -177,6 +186,43 @@ def test_trigger_should_recalc_window():
assert trigger._is_window_invalid(x), x
# Test pitch-invariant triggering using spectrum
def test_correlate_offset():
"""
Catches bug where writing N instead of Ncorr
prevented function from returning positive numbers.
"""
np.random.seed(31337)
correlate_offset = CorrelationTrigger.correlate_offset
# Ensure autocorrelation on random data returns peak at 0.
N = 100
spectrum = np.random.random(N)
assert correlate_offset(spectrum, spectrum, 12) == 0
# Ensure cross-correlation of time-shifted impulses works.
# Assume wave where y=[i==99].
wave = np.eye(N)[::-1]
# Taking a slice beginning at index i will produce an impulse at 99-i.
left = wave[30]
right = wave[40]
# We need to slide `left` to the right by 10 samples, and vice versa.
for radius in [None, 12]:
assert correlate_offset(data=left, prev_buffer=right, radius=radius) == 10
assert correlate_offset(data=right, prev_buffer=left, radius=radius) == -10
# The correlation peak at zero-offset is small enough for boost_x to be returned.
boost_y = 1.5
ones = np.ones(N)
for boost_x in [6, -6]:
assert (
correlate_offset(ones, ones, radius=9, boost_x=boost_x, boost_y=boost_y)
== boost_x
)
# Test the ability to load legacy TriggerConfig