pull/643/head^2
Travis Fischer 2024-06-03 17:09:28 -05:00
rodzic f5319b4e17
commit 0f999c4f00
3 zmienionych plików z 142 dodań i 7 usunięć

Wyświetl plik

@ -0,0 +1,32 @@
#!/usr/bin/env node
import 'dotenv/config'
import { ChatModel, createAIRunner } from '@dexaai/dexter'
import { PerigonClient, SerperClient } from '../../src/index.js'
import { createDexterFunctions } from '../../src/sdks/dexter.js'
async function main() {
const perigon = new PerigonClient()
const serper = new SerperClient()
const runner = createAIRunner({
chatModel: new ChatModel({
params: { model: 'gpt-4o', temperature: 0 }
// debug: true
}),
functions: createDexterFunctions(
perigon.functions.pick('search_news_stories'),
serper
),
systemMessage:
'You are a helpful assistant. Be as concise as possible. Respond in markdown. Always cite your sources.'
})
const result = await runner(
'Summarize the latest news stories about the upcoming US election.'
)
console.log(result)
}
await main()

Wyświetl plik

@ -10,7 +10,10 @@ async function main() {
const weather = new WeatherClient()
const runner = createAIRunner({
chatModel: new ChatModel({ params: { model: 'gpt-4o', temperature: 0 } }),
chatModel: new ChatModel({
params: { model: 'gpt-4o', temperature: 0 }
// debug: true
}),
functions: createDexterFunctions(weather),
systemMessage: 'You are a helpful assistant. Be as concise as possible.'
})

112
readme.md
Wyświetl plik

@ -13,9 +13,106 @@
<a href="https://twitter.com/transitive_bs"><img alt="Discuss on Twitter" src="https://img.shields.io/badge/twitter-discussion-blue" /></a>
</p>
# Agentic <!-- omit from toc -->
# @agentic/stdlib <!-- omit from toc -->
**Coming soon**
**TODO: this is an active WIP**
The goal of this project is to create a **set of standard AI functions / tools** which are **optimized for both normal TS-usage as well as LLM-based usage** across any popular AI SDK via simple adaptors.
For example, all of the stdlib tools like `WeatherClient` can be used both as normal, fully-typed TS SDKs:
```ts
import { WeatherClient } from '@agentic/stdlib'
const weather = new WeatherClient() // (requires `WEATHER_API_KEY` env var)
const result = await clearbit.getCurrentWeather({
q: 'San Francisco'
})
console.log(result)
```
Or you can use them as a set of LLM-based functions / tools using adaptors specific to each LLM SDK. This example uses [Vercel's AI SDK](https://github.com/vercel/ai):
```ts
// sdk-specific imports
import { openai } from '@ai-sdk/openai'
import { generateText } from 'ai'
import { createAISDKTools } from '@agentic/stdlib/ai-sdk'
// sdk-agnostic imports
import { WeatherClient } from '@agentic/stdlib'
const weather = new WeatherClient()
const result = await generateText({
model: openai('gpt-4o'),
tools: createAISDKTools(weather),
toolChoice: 'required',
prompt: 'What is the weather in San Francisco?'
})
console.log(result.toolResults[0])
```
Let's take a slightly more complicated example which uses multiple clients and selects a subset of their functions using the `pick` method:
```ts
// sdk-specific imports
import { ChatModel, createAIRunner } from '@dexaai/dexter'
import { createDexterFunctions } from '@agentic/stdlib/dexter'
// sdk-agnostic imports
import { PerigonClient, SerperClient } from '@agentic/stdlib'
async function main() {
const perigon = new PerigonClient()
const serper = new SerperClient()
const runner = createAIRunner({
chatModel: new ChatModel({
params: { model: 'gpt-4o', temperature: 0 }
// debug: true
}),
functions: createDexterFunctions(
perigon.functions.pick('search_news_stories'),
serper
),
systemMessage:
'You are a helpful assistant. Be as concise as possible. Respond in markdown. Always cite your sources.'
})
const result = await runner(
'Summarize the latest news stories about the upcoming US election.'
)
console.log(result)
}
```
Here we've exposed 2 functions to the LLM, `search_news_stories` which corresponds to the `PerigonClient.searchStories` method and `serper_google_search` via the `SerperClient.search` method.
All of the SDK adaptors like `createDexterFunctions` are very flexible in what they accept, which is why we can pass an `AIFunctionSet` (like `perigon.functions.pick('search_news_stories')` or `perigon.functions` or `serper.functions`) or an `AIFunctioProvider` (like `perigon` or `serper`) or an individual `AIFunction` (like `perigon.functions.get('search_news_stories')` or `serper.functions.get('serper_google_search')`). You can pass as many or as few of these `AIFunctionLike` objects as you'd like and you can manipulate them as `AIFunctionSet` sets via `.pick`, `.omit`, and `.map`.
The SDK-specific imports are all isolated to keep the main `@agentic/stdlib` as lightweight as possible.
## Goals
- clients should be as minimal as possible
- clients must use `ky` as a lightweight native fetch wrapper
- clients must have a strongly-typed TS DX
- clients should expose select methods via the `@aiFunction(...)` decorator
- `@aiFunction` methods must use `zod` for input schema validation
- it should be easy to create external clients which follow the `AIFunctioProvider` superclass / `@aiFunction` decorator pattern
- common utility functions for LLM-based function calling should be exported for convenience
- clients and AIFunctions should be composable via `AIFunctionSet`
- clients must work with all major TS AI SDKs
- SDK adaptors should be as lightweight as possible and be optional peer dependencies of `@agentic/core`
- SDK adatptor entrypoints should all be isolated to their own top-level imports
- `@agentic/core/ai-sdk`
- `@agentic/core/dexter`
- `@agentic/core/genkit`
- `@agentic/core/langchain`
## Services
@ -23,19 +120,20 @@
- dexa
- diffbot
- exa
- firecrawl
- people data labs
- firecrawl (WIP)
- people data labs (WIP)
- perigon
- predict leads
- proxycurl
- scraper
- searxng
- serpapi
- serper
- twitter
- twitter (WIP)
- weatherapi
- wikipedia
## SDKs
## AI SDKs
- vercel ai sdk
- dexa dexter
@ -62,6 +160,8 @@
- provide a converter for langchain `DynamicStructuredTool`
- pull from other libs
- pull from [nango](https://docs.nango.dev/integrations/overview)
- tools / chains / flows / runnables
- market maps
- https://github.com/causaly/zod-validation-error
## License