chatgpt-api/src/llm.ts

297 wiersze
7.8 KiB
TypeScript
Czysty Zwykły widok Historia

2023-05-24 03:22:50 +00:00
import Mustache from 'mustache'
2023-05-04 19:48:28 +00:00
import type { SetRequired } from 'type-fest'
2023-05-04 03:54:32 +00:00
import { ZodRawShape, ZodTypeAny, z } from 'zod'
2023-05-24 03:22:50 +00:00
import { printNode, zodToTs } from 'zod-to-ts'
import * as types from './types'
2023-05-04 19:48:28 +00:00
const defaultOpenAIModel = 'gpt-3.5-turbo'
export class Agentic {
_client: types.openai.OpenAIClient
_verbosity: number
_defaults: Pick<
types.BaseLLMOptions,
'provider' | 'model' | 'modelParams' | 'timeoutMs' | 'retryConfig'
>
2023-05-04 19:48:28 +00:00
constructor(opts: {
openai: types.openai.OpenAIClient
verbosity?: number
defaults?: Pick<
types.BaseLLMOptions,
'provider' | 'model' | 'modelParams' | 'timeoutMs' | 'retryConfig'
>
}) {
this._client = opts.openai
this._verbosity = opts.verbosity ?? 0
this._defaults = {
provider: 'openai',
2023-05-04 19:48:28 +00:00
model: defaultOpenAIModel,
modelParams: {},
timeoutMs: 30000,
retryConfig: {
attempts: 3,
strategy: 'heal',
...opts.defaults?.retryConfig
},
...opts.defaults
}
}
gpt4(
promptOrChatCompletionParams: string | types.openai.ChatCompletionParams
) {
let options: Omit<types.openai.ChatCompletionParams, 'model'>
if (typeof promptOrChatCompletionParams === 'string') {
options = {
messages: [
{
role: 'user',
content: promptOrChatCompletionParams
}
]
}
} else {
options = promptOrChatCompletionParams
if (!options.messages) {
2023-05-04 19:48:28 +00:00
throw new Error('messages must be provided')
}
}
return new OpenAIChatModelBuilder(this._client, {
...(this._defaults as any), // TODO
model: 'gpt-4',
...options
})
}
}
2023-05-04 03:54:32 +00:00
export abstract class BaseLLMCallBuilder<
TInput extends ZodRawShape | ZodTypeAny = ZodTypeAny,
2023-05-04 19:48:28 +00:00
TOutput extends ZodRawShape | ZodTypeAny = z.ZodType<string>,
2023-05-04 03:54:32 +00:00
TModelParams extends Record<string, any> = Record<string, any>
> {
_options: types.BaseLLMOptions<TInput, TOutput, TModelParams>
constructor(options: types.BaseLLMOptions<TInput, TOutput, TModelParams>) {
this._options = options
}
2023-05-04 03:54:32 +00:00
input<U extends ZodRawShape | ZodTypeAny = TInput>(
inputSchema: U
): BaseLLMCallBuilder<U, TOutput, TModelParams> {
;(
this as unknown as BaseLLMCallBuilder<U, TOutput, TModelParams>
)._options.input = inputSchema
return this as unknown as BaseLLMCallBuilder<U, TOutput, TModelParams>
}
2023-05-04 03:54:32 +00:00
output<U extends ZodRawShape | ZodTypeAny = TOutput>(
outputSchema: U
): BaseLLMCallBuilder<TInput, U, TModelParams> {
;(
this as unknown as BaseLLMCallBuilder<TInput, U, TModelParams>
)._options.output = outputSchema
return this as unknown as BaseLLMCallBuilder<TInput, U, TModelParams>
}
examples(examples: types.LLMExample[]) {
this._options.examples = examples
return this
}
retry(retryConfig: types.LLMRetryConfig) {
this._options.retryConfig = retryConfig
return this
}
2023-05-04 03:54:32 +00:00
abstract call(
input?: types.ParsedData<TInput>
): Promise<types.ParsedData<TOutput>>
2023-05-02 06:44:08 +00:00
// TODO
2023-05-04 03:54:32 +00:00
// abstract stream({
2023-05-02 06:44:08 +00:00
// input: TInput,
// onProgress: types.ProgressFunction
2023-05-04 03:54:32 +00:00
// }): Promise<TOutput>
}
export abstract class ChatModelBuilder<
2023-05-04 03:54:32 +00:00
TInput extends ZodRawShape | ZodTypeAny = ZodTypeAny,
2023-05-04 19:48:28 +00:00
TOutput extends ZodRawShape | ZodTypeAny = z.ZodType<string>,
2023-05-04 03:54:32 +00:00
TModelParams extends Record<string, any> = Record<string, any>
> extends BaseLLMCallBuilder<TInput, TOutput, TModelParams> {
_messages: types.ChatMessage[]
constructor(options: types.ChatModelOptions<TInput, TOutput, TModelParams>) {
super(options)
this._messages = options.messages
}
}
2023-05-04 03:54:32 +00:00
export class OpenAIChatModelBuilder<
TInput extends ZodRawShape | ZodTypeAny = ZodTypeAny,
2023-05-04 19:48:28 +00:00
TOutput extends ZodRawShape | ZodTypeAny = z.ZodType<string>
2023-05-04 03:54:32 +00:00
> extends ChatModelBuilder<
TInput,
TOutput,
2023-05-04 19:48:28 +00:00
SetRequired<Omit<types.openai.ChatCompletionParams, 'messages'>, 'model'>
> {
_client: types.openai.OpenAIClient
constructor(
client: types.openai.OpenAIClient,
options: types.ChatModelOptions<
TInput,
TOutput,
Omit<types.openai.ChatCompletionParams, 'messages'>
>
) {
super({
provider: 'openai',
2023-05-04 19:48:28 +00:00
model: defaultOpenAIModel,
...options
})
this._client = client
}
2023-05-04 03:54:32 +00:00
override async call(
input?: types.ParsedData<TInput>
): Promise<types.ParsedData<TOutput>> {
2023-05-24 03:22:50 +00:00
if (this._options.input) {
const inputSchema =
this._options.input instanceof z.ZodType
? this._options.input
: z.object(this._options.input)
// TODO: handle errors gracefully
input = inputSchema.parse(input)
}
2023-05-04 19:48:28 +00:00
// TODO: construct messages
2023-05-24 03:22:50 +00:00
const messages = this._messages
2023-05-04 19:48:28 +00:00
const completion = await this._client.createChatCompletion({
2023-05-24 03:22:50 +00:00
model: defaultOpenAIModel, // TODO: this shouldn't be necessary but TS is complaining
2023-05-04 19:48:28 +00:00
...this._options.modelParams,
2023-05-24 03:22:50 +00:00
messages
2023-05-04 19:48:28 +00:00
})
if (this._options.output) {
2023-05-24 03:22:50 +00:00
const outputSchema =
2023-05-04 19:48:28 +00:00
this._options.output instanceof z.ZodType
? this._options.output
: z.object(this._options.output)
// TODO: convert string => object if necessary
// TODO: handle errors, retry logic, and self-healing
2023-05-24 03:22:50 +00:00
return outputSchema.parse(completion.message.content)
2023-05-04 19:48:28 +00:00
} else {
return completion.message.content as any
}
}
2023-05-24 03:22:50 +00:00
protected async _buildMessages(text: string, opts: types.SendMessageOptions) {
const { systemMessage = this._systemMessage } = opts
let { parentMessageId } = opts
const userLabel = USER_LABEL_DEFAULT
const assistantLabel = ASSISTANT_LABEL_DEFAULT
const maxNumTokens = this._maxModelTokens - this._maxResponseTokens
let messages: types.openai.ChatCompletionRequestMessage[] = []
if (systemMessage) {
messages.push({
role: 'system',
content: systemMessage
})
}
const systemMessageOffset = messages.length
let nextMessages = text
? messages.concat([
{
role: 'user',
content: text,
name: opts.name
}
])
: messages
let numTokens = 0
do {
const prompt = nextMessages
.reduce((prompt, message) => {
switch (message.role) {
case 'system':
return prompt.concat([`Instructions:\n${message.content}`])
case 'user':
return prompt.concat([`${userLabel}:\n${message.content}`])
default:
return prompt.concat([`${assistantLabel}:\n${message.content}`])
}
}, [] as string[])
.join('\n\n')
const nextNumTokensEstimate = await this._getTokenCount(prompt)
const isValidPrompt = nextNumTokensEstimate <= maxNumTokens
if (prompt && !isValidPrompt) {
break
}
messages = nextMessages
numTokens = nextNumTokensEstimate
if (!isValidPrompt) {
break
}
if (!parentMessageId) {
break
}
const parentMessage = await this._getMessageById(parentMessageId)
if (!parentMessage) {
break
}
const parentMessageRole = parentMessage.role || 'user'
nextMessages = nextMessages.slice(0, systemMessageOffset).concat([
{
role: parentMessageRole,
content: parentMessage.text,
name: parentMessage.name
},
...nextMessages.slice(systemMessageOffset)
])
parentMessageId = parentMessage.parentMessageId
} while (true)
// Use up to 4096 tokens (prompt + response), but try to leave 1000 tokens
// for the response.
const maxTokens = Math.max(
1,
Math.min(this._maxModelTokens - numTokens, this._maxResponseTokens)
)
return { messages, maxTokens, numTokens }
}
protected async _getTokenCount(text: string) {
// TODO: use a better fix in the tokenizer
text = text.replace(/<\|endoftext\|>/g, '')
return tokenizer.encode(text).length
}
}