chasemapper/chasemapper.py

487 wiersze
18 KiB
Python

#!/usr/bin/env python2.7
#
# Project Horus - Browser-Based Chase Mapper
#
# Copyright (C) 2018 Mark Jessop <vk5qi@rfhead.net>
# Released under GNU GPL v3 or later
#
import json
import logging
import flask
from flask_socketio import SocketIO
import sys
import time
import traceback
from threading import Thread
from datetime import datetime
from dateutil.parser import parse
from horuslib import *
from horuslib.geometry import *
from horuslib.atmosphere import time_to_landing
from horuslib.listener import OziListener, UDPListener
from horuslib.earthmaths import *
# Define Flask Application, and allow automatic reloading of templates for dev work
app = flask.Flask(__name__)
app.config['SECRET_KEY'] = 'secret!'
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.jinja_env.auto_reload = True
# SocketIO instance
socketio = SocketIO(app)
# Global stores of data.
# Don't expose these settings to the client!
pred_settings = {
'pred_binary': "./pred",
'gfs_path': "./gfs/",
}
# These settings are shared between server and all clients, and are updated dynamically.
chasemapper_config = {
# Start location for the map (until either a chase car position, or balloon position is available.)
'default_lat': -34.9,
'default_lon': 138.6,
# Predictor settings
'pred_enabled': False, # Enable running and display of predicted flight paths.
# Default prediction settings (actual values will be used once the flight is underway)
'pred_model': "Disabled",
'pred_desc_rate': 6.0,
'pred_burst': 28000,
'show_abort': True, # Show a prediction of an 'abort' paths (i.e. if the balloon bursts *now*)
'pred_update_rate': 15 # Update predictor every 15 seconds.
}
# Payload data Stores
current_payloads = {} # Archive data which will be passed to the web client
current_payload_tracks = {} # Store of payload Track objects which are used to calculate instantaneous parameters.
# Chase car position
car_track = GenericTrack()
#
# Flask Routes
#
@app.route("/")
def flask_index():
""" Render main index page """
return flask.render_template('index.html')
@app.route("/get_telemetry_archive")
def flask_get_telemetry_archive():
return json.dumps(current_payloads)
@app.route("/get_config")
def flask_get_config():
return json.dumps(chasemapper_config)
def flask_emit_event(event_name="none", data={}):
""" Emit a socketio event to any clients. """
socketio.emit(event_name, data, namespace='/chasemapper')
@socketio.on('client_settings_update', namespace='/chasemapper')
def client_settings_update(data):
global chasemapper_config
# Overwrite local config data with data from the client.
# TODO: Some sanitization of this data... this could lead to bad things.
chasemapper_config = data
# Updates based on
# Push settings back out to all clients.
flask_emit_event('server_settings_update', chasemapper_config)
def handle_new_payload_position(data):
_lat = data['lat']
_lon = data['lon']
_alt = data['alt']
_time_dt = data['time_dt']
_callsign = data['callsign']
_short_time = _time_dt.strftime("%H:%M:%S")
if _callsign not in current_payloads:
# New callsign! Create entries in data stores.
current_payload_tracks[_callsign] = GenericTrack()
current_payloads[_callsign] = {
'telem': {'callsign': _callsign, 'position':[_lat, _lon, _alt], 'vel_v':0.0, 'speed':0.0, 'short_time':_short_time, 'time_to_landing':""},
'path': [],
'pred_path': [],
'pred_landing': [],
'burst': [],
'abort_path': [],
'abort_landing': []
}
# Add new data into the payload's track, and get the latest ascent rate.
current_payload_tracks[_callsign].add_telemetry({'time': _time_dt, 'lat':_lat, 'lon': _lon, 'alt':_alt, 'comment':_callsign})
_state = current_payload_tracks[_callsign].get_latest_state()
if _state != None:
_vel_v = _state['ascent_rate']
_speed = _state['speed']
# If this payload is in descent, calculate the time to landing.
if _vel_v < 0.0:
# Try and get the altitude of the chase car - we use this as the expected 'ground' level.
_car_state = car_track.get_latest_state()
if _car_state != None:
_ground_asl = _car_state['alt']
else:
_ground_asl = 0.0
# Calculate
_ttl = time_to_landing(_alt, _vel_v, ground_asl=_ground_asl)
if _ttl is None:
_ttl = ""
elif _ttl == 0:
_ttl = "LANDED"
else:
_min = _ttl // 60
_sec = _ttl % 60
_ttl = "%02d:%02d" % (_min,_sec)
else:
_ttl = ""
else:
_vel_v = 0.0
_ttl = ""
# Now update the main telemetry store.
current_payloads[_callsign]['telem'] = {
'callsign': _callsign,
'position':[_lat, _lon, _alt],
'vel_v':_vel_v,
'speed':_speed,
'short_time':_short_time,
'time_to_landing': _ttl}
current_payloads[_callsign]['path'].append([_lat, _lon, _alt])
# Update the web client.
flask_emit_event('telemetry_event', current_payloads[_callsign]['telem'])
#
# Predictor Code
#
predictor = None
predictor_semaphore = False
predictor_thread_running = True
predictor_thread = None
def predictorThread():
""" Run the predictor on a regular interval """
global predictor_thread_running, chasemapper_config
logging.info("Predictor loop started.")
while predictor_thread_running:
run_prediction()
for i in range(int(chasemapper_config['pred_update_rate'])):
time.sleep(1)
if predictor_thread_running == False:
return
def run_prediction():
''' Run a Flight Path prediction '''
global chasemapper_config, current_payloads, current_payload_tracks, predictor
if (predictor == None) or (chasemapper_config['pred_enabled'] == False):
return
# Set the semaphore so we don't accidentally kill the predictor object while it's running.
predictor_semaphore = True
for _payload in current_payload_tracks:
_current_pos = current_payload_tracks[_payload].get_latest_state()
_current_pos_list = [0,_current_pos['lat'], _current_pos['lon'], _current_pos['alt']]
if _current_pos['is_descending']:
_desc_rate = _current_pos['landing_rate']
else:
_desc_rate = chasemapper_config['pred_desc_rate']
if _current_pos['alt'] > chasemapper_config['pred_burst']:
_burst_alt = _current_pos['alt'] + 100
else:
_burst_alt = chasemapper_config['pred_burst']
logging.info("Running Predictor for: %s." % _payload)
_pred_path = predictor.predict(
launch_lat=_current_pos['lat'],
launch_lon=_current_pos['lon'],
launch_alt=_current_pos['alt'],
ascent_rate=_current_pos['ascent_rate'],
descent_rate=_desc_rate,
burst_alt=_burst_alt,
launch_time=_current_pos['time'],
descent_mode=_current_pos['is_descending'])
if len(_pred_path) > 1:
# Valid Prediction!
_pred_path.insert(0,_current_pos_list)
# Convert from predictor output format to a polyline.
_pred_output = []
for _point in _pred_path:
_pred_output.append([_point[1], _point[2], _point[3]])
current_payloads[_payload]['pred_path'] = _pred_output
current_payloads[_payload]['pred_landing'] = _pred_output[-1]
if _current_pos['is_descending']:
current_payloads[_payload]['burst'] = []
else:
# Determine the burst position.
_cur_alt = 0.0
_cur_idx = 0
for i in range(len(_pred_output)):
if _pred_output[i][2]>_cur_alt:
_cur_alt = _pred_output[i][2]
_cur_idx = i
current_payloads[_payload]['burst'] = _pred_output[_cur_idx]
logging.info("Prediction Updated, %d data points." % len(_pred_path))
else:
logging.error("Prediction Failed.")
# Abort predictions
if chasemapper_config['show_abort'] and (_current_pos['alt'] < chasemapper_config['pred_burst']) and (_current_pos['is_descending'] == False):
logging.info("Running Abort Predictor for: %s." % _payload)
_abort_pred_path = predictor.predict(
launch_lat=_current_pos['lat'],
launch_lon=_current_pos['lon'],
launch_alt=_current_pos['alt'],
ascent_rate=_current_pos['ascent_rate'],
descent_rate=_desc_rate,
burst_alt=_current_pos['alt']+200,
launch_time=_current_pos['time'],
descent_mode=_current_pos['is_descending'])
if len(_pred_path) > 1:
# Valid Prediction!
_abort_pred_path.insert(0,_current_pos_list)
# Convert from predictor output format to a polyline.
_abort_pred_output = []
for _point in _abort_pred_path:
_abort_pred_output.append([_point[1], _point[2], _point[3]])
current_payloads[_payload]['abort_path'] = _abort_pred_output
current_payloads[_payload]['abort_landing'] = _abort_pred_output[-1]
logging.info("Abort Prediction Updated, %d data points." % len(_pred_path))
else:
logging.error("Prediction Failed.")
current_payloads[_payload]['abort_path'] = []
current_payloads[_payload]['abort_landing'] = []
else:
# Zero the abort path and landing
current_payloads[_payload]['abort_path'] = []
current_payloads[_payload]['abort_landing'] = []
predictor_semaphore = False
# Send the web client the updated prediction data.
_client_data = {
'callsign': _payload,
'pred_path': current_payloads[_payload]['pred_path'],
'pred_landing': current_payloads[_payload]['pred_landing'],
'burst': current_payloads[_payload]['burst'],
'abort_path': current_payloads[_payload]['abort_path'],
'abort_landing': current_payloads[_payload]['abort_landing']
}
flask_emit_event('predictor_update', _client_data)
def initPredictor():
global predictor, predictor_thread, chasemapper_config
try:
from cusfpredict.predict import Predictor
from cusfpredict.utils import gfs_model_age
# Check if we have any GFS data
_model_age = gfs_model_age(pred_settings['gfs_path'])
if _model_age == "Unknown":
logging.error("No GFS data in directory.")
chasemapper_config['pred_model'] = "No GFS Data."
flask_emit_event('predictor_model_update',{'model':"No GFS data."})
else:
chasemapper_config['pred_model'] = _model_age
flask_emit_event('predictor_model_update',{'model':_model_age})
predictor = Predictor(bin_path=pred_settings['pred_binary'], gfs_path=pred_settings['gfs_path'])
# Start up the predictor thread.
predictor_thread = Thread(target=predictorThread)
predictor_thread.start()
# Set the predictor to enabled, and update the clients.
chasemapper_config['pred_enabled'] = True
flask_emit_event('server_settings_update', chasemapper_config)
except Exception as e:
traceback.print_exc()
logging.error("Loading predictor failed: " + str(e))
flask_emit_event('predictor_model_update',{'model':"Failed - Check Log."})
chasemapper_config['pred_model'] = "Failed - Check Log."
print("Loading Predictor failed.")
predictor = None
@socketio.on('download_model', namespace='/chasemapper')
def download_new_model(data):
""" Trigger a download of a new weather model """
logging.info("Web Client Initiated request for new predictor data.")
pass
# TODO
# Incoming telemetry handlers
def ozi_listener_callback(data):
""" Handle a OziMux input message """
# OziMux message contains:
# {'lat': -34.87915, 'comment': 'Telemetry Data', 'alt': 26493.0, 'lon': 139.11883, 'time': datetime.datetime(2018, 7, 16, 10, 55, 49, tzinfo=tzutc())}
logging.info("OziMux Data:" + str(data))
output = {}
output['lat'] = data['lat']
output['lon'] = data['lon']
output['alt'] = data['alt']
output['callsign'] = "Payload"
output['time_dt'] = data['time']
handle_new_payload_position(output)
def udp_listener_summary_callback(data):
''' Handle a Payload Summary Message from UDPListener '''
global current_payloads, current_payload_tracks
# Extract the fields we need.
logging.info("Payload Summary Data: " + str(data))
# Convert to something generic we can pass onwards.
output = {}
output['lat'] = data['latitude']
output['lon'] = data['longitude']
output['alt'] = data['altitude']
output['callsign'] = "Payload" # data['callsign'] # Quick hack to limit to a single balloon
# Process the 'short time' value if we have been provided it.
if 'time' in data.keys():
_full_time = datetime.utcnow().strftime("%Y-%m-%dT") + data['time'] + "Z"
output['time_dt'] = parse(_full_time)
else:
# Otherwise use the current UTC time.
output['time_dt'] = datetime.utcnow()
handle_new_payload_position(output)
def udp_listener_car_callback(data):
''' Handle car position data '''
global car_track
logging.debug("Car Position:" + str(data))
_lat = data['latitude']
_lon = data['longitude']
_alt = data['altitude']
_comment = "CAR"
_time_dt = datetime.utcnow()
_car_position_update = {
'time' : _time_dt,
'lat' : _lat,
'lon' : _lon,
'alt' : _alt,
'comment': _comment
}
car_track.add_telemetry(_car_position_update)
_state = car_track.get_latest_state()
_heading = _state['heading']
# Push the new car position to the web client
flask_emit_event('telemetry_event', {'callsign': 'CAR', 'position':[_lat,_lon,_alt], 'vel_v':0.0, 'heading': _heading})
# Add other listeners here...
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group()
parser.add_argument("-p","--port",default=5001,help="Port to run Web Server on.")
group.add_argument("--ozimux", action="store_true", default=False, help="Take payload input via OziMux (listen on port 8942).")
group.add_argument("--summary", action="store_true", default=False, help="Take payload input data via Payload Summary Broadcasts.")
parser.add_argument("--clamp", action="store_false", default=True, help="Clamp all tracks to ground.")
parser.add_argument("--nolabels", action="store_true", default=False, help="Inhibit labels on placemarks.")
parser.add_argument("--predict", action="store_true", help="Enable Flight Path Predictions.")
parser.add_argument("--predict_binary", type=str, default="./pred", help="Location of the CUSF predictor binary. Defaut = ./pred")
parser.add_argument("--burst_alt", type=float, default=30000.0, help="Expected Burst Altitude (m). Default = 30000")
parser.add_argument("--descent_rate", type=float, default=5.0, help="Expected Descent Rate (m/s, positive value). Default = 5.0")
parser.add_argument("--abort", action="store_true", default=False, help="Enable 'Abort' Predictions.")
parser.add_argument("--predict_rate", type=int, default=15, help="Run predictions every X seconds. Default = 15 seconds.")
parser.add_argument("-v", "--verbose", action="store_true", default=False, help="Verbose output.")
args = parser.parse_args()
# Configure logging
if args.verbose:
_log_level = logging.DEBUG
else:
_log_level = logging.INFO
logging.basicConfig(format='%(asctime)s %(levelname)s:%(message)s', stream=sys.stdout, level=_log_level)
# Make flask & socketio only output errors, not every damn GET request.
logging.getLogger("requests").setLevel(logging.CRITICAL)
logging.getLogger("urllib3").setLevel(logging.CRITICAL)
logging.getLogger('werkzeug').setLevel(logging.ERROR)
logging.getLogger('socketio').setLevel(logging.ERROR)
logging.getLogger('engineio').setLevel(logging.ERROR)
if args.ozimux:
logging.info("Using OziMux data source.")
_listener = OziListener(telemetry_callback=ozi_listener_callback)
# Start up UDP Broadcast Listener (which we use for car positions even if not for the payload)
if args.summary:
logging.info("Using Payload Summary data source.")
_broadcast_listener = UDPListener(summary_callback=udp_listener_summary_callback,
gps_callback=udp_listener_car_callback)
else:
_broadcast_listener = UDPListener(summary_callback=None,
gps_callback=udp_listener_car_callback)
_broadcast_listener.start()
if args.predict:
initPredictor()
# Run the Flask app, which will block until CTRL-C'd.
socketio.run(app, host='0.0.0.0', port=args.port)
# Attempt to close the listener.
try:
predictor_thread_running = False
_broadcast_listener.close()
_listener.close()
except:
pass