openai-integration
dgtlmoon 2025-07-24 00:23:05 +02:00
rodzic c070265668
commit df9258a8f7
8 zmienionych plików z 122 dodań i 14 usunięć

Wyświetl plik

@ -264,17 +264,20 @@ nav
</div>
<div class="tab-pane-inner" id="ai-options">
<p><strong>New:</strong> click here (link to changedetection.io tutorial page) find out how to setup and example</p>
<br>
key fields should be some password type field so you can see its set but doesnt contain the key on view and doesnt lose it on save<br>
<div class="pure-control-group inline-radio">
{{ render_simple_field(form.application.form.ai.form.LLM_backend) }}
<span class="pure-form-message-inline">Preferred LLM connection</span>
</div>
<div class="pure-control-group">
{{ render_checkbox_field(form.application.form.ai.form.openai_key) }}
{{ render_checkbox_field(form.application.form.ai.form.API_keys.form.openai) }}
<span class="pure-form-message-inline">Go here to read more about OpenAI integration</span>
</div>
<div class="pure-control-group">
{{ render_checkbox_field(form.application.form.ai.form.gemini_key) }}
{{ render_checkbox_field(form.application.form.ai.form.API_keys.form.gemini) }}
<span class="pure-form-message-inline">Go here to read more about Google Gemini integration</span>
</div>
</div>

Wyświetl plik

@ -212,7 +212,14 @@ def construct_blueprint(datastore: ChangeDetectionStore, update_q, queuedWatchMe
add_paused = request.form.get('edit_and_watch_submit_button') != None
processor = request.form.get('processor', 'text_json_diff')
new_uuid = datastore.add_watch(url=url, tag=request.form.get('tags').strip(), extras={'paused': add_paused, 'processor': processor})
extras = {'paused': add_paused, 'processor': processor}
LLM_prompt = request.form.get('LLM_prompt', '').strip()
if LLM_prompt:
extras['LLM_prompt'] = LLM_prompt
extras['LLM_send_type'] = request.form.get('LLM_send_type', 'text')
new_uuid = datastore.add_watch(url=url, tag=request.form.get('tags').strip(), extras=extras)
if new_uuid:
if add_paused:

Wyświetl plik

@ -761,6 +761,17 @@ class globalSettingsApplicationUIForm(Form):
socket_io_enabled = BooleanField('Realtime UI Updates Enabled', default=True, validators=[validators.Optional()])
favicons_enabled = BooleanField('Favicons Enabled', default=True, validators=[validators.Optional()])
class globalSettingsApplicationAIKeysForm(Form):
openai = StringField('OpenAI Key',
validators=[validators.Optional()],
render_kw={"placeholder": 'xxxxxxxxx'}
)
gemini = StringField('Google Gemini Key',
validators=[validators.Optional()],
render_kw={"placeholder": 'ooooooooo'}
)
class globalSettingsApplicationAIForm(Form):
#@todo use only configured types?
@ -768,14 +779,9 @@ class globalSettingsApplicationAIForm(Form):
choices=[('openai', 'Open AI'), ('gemini', 'Gemini')],
default="text")
openai_key = StringField('OpenAI Key',
validators=[validators.Optional()],
render_kw={"placeholder": 'xxxxxxxxx'}
)
gemini_key = StringField('Google Gemini Key',
validators=[validators.Optional()],
render_kw={"placeholder": 'ooooooooo'}
)
# So that we can pass this to our LLM/__init__.py as a keys dict
API_keys = FormField(globalSettingsApplicationAIKeysForm)
# datastore.data['settings']['application']..

Wyświetl plik

@ -0,0 +1,64 @@
import importlib
from langchain_core.messages import SystemMessage, HumanMessage
SYSTEM_MESSAGE = (
"You are a text analyser who will attempt to give the most concise information "
"to the request, the information should be returned in a way that if I ask you again "
"I should get the same answer if the outcome is the same. The goal is to cut down "
"or reduce the text changes from you when i ask the same question about similar content "
"Always list items in exactly the same order and wording as found in the source text. "
)
class LLM_integrate:
PROVIDER_MAP = {
"openai": ("langchain_openai", "ChatOpenAI"),
"azure": ("langchain_community.chat_models", "AzureChatOpenAI"),
"gemini": ("langchain_google_genai", "ChatGoogleGenerativeAI")
}
def __init__(self, api_keys: dict):
"""
api_keys = {
"openai": "sk-xxx",
"azure": "AZURE_KEY",
"gemini": "GEMINI_KEY"
}
"""
self.api_keys = api_keys
def run(self, provider: str, model: str, message: str):
module_name, class_name = self.PROVIDER_MAP[provider]
# Import the class dynamically
module = importlib.import_module(module_name)
LLMClass = getattr(module, class_name)
# Create the LLM object
llm_kwargs = {}
if provider == "openai":
llm_kwargs = dict(api_key=self.api_keys.get("openai", ''),
model=model,
# https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html#langchain_openai.chat_models.base.ChatOpenAI.temperature
temperature=0 # most deterministic,
)
elif provider == "azure":
llm_kwargs = dict(
api_key=self.api_keys["azure"],
azure_endpoint="https://<your-endpoint>.openai.azure.com",
deployment_name=model
)
elif provider == "gemini":
llm_kwargs = dict(api_key=self.api_keys.get("gemini"), model=model)
llm = LLMClass(**llm_kwargs)
# Build your messages
messages = [
SystemMessage(content=SYSTEM_MESSAGE),
HumanMessage(content=message)
]
# Run the model asynchronously
result = llm.invoke(messages)
return result.content

Wyświetl plik

@ -1,5 +1,6 @@
from abc import abstractmethod
from changedetectionio.content_fetchers.base import Fetcher
from changedetectionio.processors.LLM import LLM_integrate
from changedetectionio.strtobool import strtobool
from copy import deepcopy
from loguru import logger

Wyświetl plik

@ -7,7 +7,7 @@ import re
import urllib3
from changedetectionio.conditions import execute_ruleset_against_all_plugins
from changedetectionio.processors import difference_detection_processor
from changedetectionio.processors import difference_detection_processor, LLM_integrate
from changedetectionio.html_tools import PERL_STYLE_REGEX, cdata_in_document_to_text, TRANSLATE_WHITESPACE_TABLE
from changedetectionio import html_tools, content_fetchers
from changedetectionio.blueprint.price_data_follower import PRICE_DATA_TRACK_ACCEPT, PRICE_DATA_TRACK_REJECT
@ -293,6 +293,30 @@ class perform_site_check(difference_detection_processor):
# we end up with 'Some text\n\n', sorting will add all those extra \n at the start, so we remove them here.
stripped_text_from_html = stripped_text_from_html.replace("\n\n", "\n")
stripped_text_from_html = '\n'.join(sorted(stripped_text_from_html.splitlines(), key=lambda x: x.lower()))
### OPENAI?
# And here we run LLM integration based on the content we received
LLM_keys = self.datastore.data['settings']['application']['ai'].get('API_keys', {})
if watch.get('LLM_prompt') and stripped_text_from_html and LLM_keys:
response = ""
try:
integrator = LLM_integrate(api_keys=LLM_keys)
response = integrator.run(
provider="openai",
model="gpt-4.1", #gpt-4-turbo
message=f"{watch.get('LLM_prompt')}\n----------- Content follows-----------\n\n{stripped_text_from_html}"
)
except Exception as e:
logger.critical(f"Error running LLM integration {str(e)} (type etc)")
raise(e)
x = 1
# todo is there something special when tokens are used up etc?
else:
stripped_text_from_html = response
# logger.trace("LLM done")
finally:
logger.debug("LLM request done (type etc)")
### CALCULATE MD5
# If there's text to ignore

Wyświetl plik

@ -21,7 +21,7 @@ function request_textpreview_update() {
namespace: 'watchEdit'
}).done(function (data) {
console.debug(data['duration'])
$('#error-text').text('');
$('#error-text').text(data['duration']);
$('#filters-and-triggers #text-preview-before-inner').text(data['before_filter']);
$('#filters-and-triggers #text-preview-inner')
.text(data['after_filter'])

Wyświetl plik

@ -69,6 +69,9 @@ werkzeug==3.0.6
# Templating, so far just in the URLs but in the future can be for the notifications also
jinja2~=3.1
jinja2-time
langchain~=0.3
langchain-openai~=0.3
openpyxl
# https://peps.python.org/pep-0508/#environment-markers
# https://github.com/dgtlmoon/changedetection.io/pull/1009