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Abstract

As Radio Frequency (RF) devices become more complex,
the specifications become more stringent. In order to guar-
antee successful operation and compliance to certain speci-
fications, digital correction techniques that compensate the
device impairments are needed. In this paper, we present
an analytical digital in-phase (I) and quadrature (Q) im-
balance and non-linear compression correction methodol-
ogy that improves the system bit error rate (BER). The gain
and phase imbalances are corrected by using the gain and
phase imbalance test data obtained during the product test-
ing. The non-linear compression term is removed using
Newton’s method. The proposed test methodology is appli-
cable for both burst based systems and continuous systems.
Simulation results indicate that the proposed method im-
proves the BER even under harsh noise contamination. The
computational overhead of the compensation technique is
minimal.

1 Introduction

The increasing demand for higher performance and
faster data rates in wireless communications drives the in-
dustry for complex and extensively integrated systems [12].
Moreover, as the available bandwidth is decreasing, ef-
ficient utilization of the bandwidth through sophisticated
modulation schemes is becoming essential [1]. These mod-
ulation schemes require that the RF subsystem be linear and
the quadrature channels be perfectly matched. However, the
inherent non-linear behavior of RF devices and the presence
of process variations challenge these requirements. I-Q im-
pairments as well as non-linear compression directly affect
the quality of the device, which may even render the device
in-operable, thereby reducing the yield. Fortunately, there is
a potential to improve the overall yield through digital com-
pensation techniques, which remove the detrimental effects
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resulting from these impairments.

RF devices are extensively tested in order to guarantee
their operation in the field under numerous worst case in-
terference and blocking scenarios. While these test data is
primarily used in order to classify devices as failure or ac-
ceptable, they can be potentially used in order to compen-
sate for device impairments, such as quadrature gain and
phase imbalances and non-linear compression. By correct-
ing these impairments, the circuit can meet its high-level
specifications such as Bit Error Rate (BER).

The calibration of quadrature imbalances is extensively
studied in the literature as they allow devices that suf-
fer from mismatched I and Q channels to be shipped out,
thereby increasing the yield. In [14], the authors compute
and store the I-Q imbalances during start-up in order to
pre-distort incoming digital signals. The I-Q imbalances
are predicted using a training signal and through loopback.
Similarly, in [8], an on-chip phase-shift correction mecha-
nism is employed. The capacitance of an on-chip varactor is
controlled through a look-up-table to counteract the phase
shift induced by the input signal.

While using on-circuit devices for I-Q imbalance com-
pensation may be effective in order to meet the emission
standards, there are numerous methods that target the I-Q
mismatches through digital compensation techniques. In
[13], a blind digital IQ estimation and compensation tech-
nique which employs the correlations between the I and Q
channels is presented. As this method does not require any
training data to predict the imbalance terms, it can be eas-
ily implemented. However, this method heavily relies on
correlation computation, matrix multiplications, and eigen-
value decompositions, which may require extensive DSP
resources. Similarly, in [2], the authors employ auto de-
correlation to predict the I-Q mismatches. The number of
multiplications is reduced by an adaptive algorithm, reduc-
ing the computation overhead. In [3], the authors employ a
non-linear regression model to predict the mismatch param-
eters.

In addition to the high computational overhead, another
significant shortcoming of the previously proposed tech-
niques is that they only compensate for linear impairments.
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Figure 1. A Generic Quadrature Transceiver

As RF devices are inherently non-linear and the modern
digital communication standards mandate the RF system to
be extremely linear to perform as prescribed, these methods
may be inadequate to improve the system quality.

In this paper we present an analytical constellation cor-
rection methodology by targeting gain and phase imbal-
ances and non-linear compression. We correct signal im-
pairments on received symbols individually without stor-
ing them into a memory for processing. Additionally, this
method is also applicable to burst based communication
systems. We first correct the gain and phase imbalances
of the received symbols. We then use Newton’s method
to calculate and compensate for the non-linear compression
term. Our method significantly improves the system BER
and paves the way for increasing the overall yield.

2 Methodology

Quadrature transceivers, as illustrated in Figure 1, are
built from orthogonal in-phase and out-of-phase channels
and non-linear amplifiers that are hopefully operating in
their linear operation range. A mismatch between these
channels and the non-linear compression phenomenon will
impact communicated symbols and may cause them to be
erroneously interpreted. Figure 2 illustrates how quadrature
imbalances combined with non-linear compression may de-
grade the system performance in the presence of additive
white gaussian noise. Note that symbols do not deviate from
their ideal locations uniformly, rather symbols with higher
amplitudes tend to cluster outside their decision boundaries.
This non-uniform behavior makes it challenging to com-
pensate for non-linearity by utilizing existing compensation
techniques.

When the amount of impairments on the system are
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Figure 2. The dashed lines are the decision boundaries
for symbols, circles are the ideal symbol locations.

known, they can be analytically calibrated by modeling
quadrature imbalance and non-linear compression behav-
iors. The relevant test data that are obtained during man-
ufacturing testing can be stored in a read only memory
(ROM) unit to enable the digital signal processing (DSP)
of the device to correctly identify received symbols. The
ROM can be programmed easily during manufacturing and
can be read during operation.

2.1 The Transceiver Model

Before presenting the details of the calibration methodol-
ogy, we present the mathematical framework used to model
the quadrature modulator by considering IQ imbalances and
nonlinear behavior. The gain and phase imbalances can be
attributed to the mismatches between the characteristics of
the I and Q channels. While the I and Q channels may also
possess non-linear characteristics, they are usually treated
as linear since the extreme non-linear characteristics of the
power amplifier forces designers to operate the rest of the
system in the linear range [11][15]. Regardless of the un-
derlying circuit implementations of each building block, the
quadrature modulation device can be modeled with the in-
clusion of I-Q imbalances as follows:

xM(t) = G{I(t) cos (ωct) + (1 + p)Q(t) sin (ωct + φ)}
G = GI , p =

GQ

GI
− 1, φ = φQ − φI (1)

where ωc is the carrier frequency, GI and GQ are the gains
of I and Q channels, I(t) and Q(t) are the data signals, φI

and φQ are the phases of the I and Q channels, G is the
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common gain of the I and Q paths, p is the gain imbalance,
and φ is the phase imbalance between I and Q paths. While
this model encompasses all imbalance terms, the non-linear
compression that originates from the RF front and back end
needed to be modeled through a third order polynomial, as
generally used in the literature [9],[10]:

xRF (t) = α1xM (t) + α2xM (t)2 + α3xM (t)3 (2)

where αi is the ith coefficient of the polynomial, and
xRF (t) is the output of the power amplifier, as illustrated in
Figure 1. Finally, we add zero-mean Gaussian white noise
to the RF signal to obtain the final output signal, x(t):

x(t) = xRF (t) + n(t) (3)

where n(t) is a random signal to model additive white Gaus-
sian noise that is generated in the system. Once all these im-
pairments are imposed on the system, the I and Q symbols
can be expressed as follows:

Î(t) = (α1 + ∆)[I(t) + (1 + p)Q(t) sin(φ)] + n̂(t)

Q̂(t) = (α1 + ∆)(1 + p)Q(t) cos(φ) + n̂(t) (4)

∆ =
9

16
α3{I(t)2 + [Q(t)(1 + p)]2

+2I(t)Q(t)(1 + p) sin(φ)}

where Î(t) is the received in-phase signal, Q̂(t) is the re-
ceived quadrature signal, ∆ is a non-linear compression
term originating from the α3 term, and n̂(t) is the received
Gaussian white noise. By employing this equation, we
can make several observations on the constellation diagram
when there are several impairments, as illustrated in Fig-
ure 3. For instance, gain and phase imbalances only change
the shape of the constellation diagram into a parallelogram.
An interesting observation is that when there is also non-
linear compression imposed on the quadrature imbalance
system, the rotations of the parallelogram (γ1 and γ2) does
not change. This behavior enables us to step by step correct
the signal impairments. We first begin by compensating the
gain and phase imbalances. We next compensate non-linear
compressions using Newton’s method.

2.2 Gain and Phase Imbalance Calibra-
tion

Since the gain and phase imbalances can be indepen-
dently corrected using the non-linear compression term, we
can eliminate the non-linear terms given in Equation 1 by
taking ∆ = 0. By arranging terms and ignoring the random
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Figure 3. The Shape of the Constellation Diagram Under
Certain Impairments

noise contribution, the compensated I and Q signals can be
expressed as follows:

I ′ = Î − sin(φ)Q̂
cos(φ)

(5)

Q′ =
Q̂

(1 + p)cos(φ)
(6)

where I ′ and Q′ are the I and Q symbols which have al-
ready been corrected for gain and phase imbalance, Î and
Q̂ are the received I and Q symbols, φ is the phase im-
balance, and p is the gain imbalance term. Note that this
equation utilizes the phase and gain imbalance coefficients
that are obtained from the on-chip memory unit.

2.3 IIP3 Calibration Using Newton’s
Method

While the non-linearity of the device creates unwanted
spectral components, it also causes the amplitude of the sig-
nal at the fundamental frequency to compress. By compar-
ing the compressions of the symbols at locations A and B
in Figure 3, we observe that signals with higher powers are
compressed more. This phenomenon indicates that unlike
gain and phase imbalances, the non-linear compression dis-
criminates between the symbols, causing high-power sym-
bols to deviate more from their ideal locations. As the gain
and phase imbalances are removed from the received sym-
bol, we can re-arrange terms by setting gain and phase im-
balances to zero:

Î ′(t) = (α1 + ∆)I(t) + n̂(t)
Q̂′(t) = (α1 + ∆)Q(t) + n̂(t) (7)

∆ =
9
16

α3{I(t)2 + Q(t)2}
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Figure 4. Impaired and Corrected Symbols

where I and Q are the resulting compensated signals, I ′

and Q′ are the gain and phase imbalance corrected I and
Q signals. The resulting system is a third order polynomial
with two unknowns (I and Q) and with two known terms (I ′

and Q′). By re-arranging the terms, the non-linear system
of equations can be formed as follows:

Î ′(t) = (α1 + ∆)I(t) + n̂(t)
Q̂′(t) = (α1 + ∆)Q(t) + n̂(t) (8)

∆ =
9
16

α3{I(t)2 + Q(t)2}

Instead of solving for two non-linear equations, we can
form a new system of equations:

Q′(t) =
−9
16

(1 + κ2)α3Q
3(t) + α1Q(t) (9)

I(t) = κQ(t) (10)

κ =
I ′(t)
Q′(t)

(11)

where κ is the ratio of gain and phase imbalance compen-
sated I and Q signals, α1 and α3 are the polynomial coef-
ficients that are employed in the non-linear amplifier mod-
eling. Since κ and Q′(t) are known, we can solve for Q(t)
by employing a numerical root finding algorithm.

The Newton’s method is an excellent candidate for this
purpose since it converges rapidly. Furthermore, since the
function is known and its derivative exists, the roots can be
calculated accurately with a few iterations. The Newton’s
method requires an initial guess for the solution and con-
verges to the solution by moving in the negative direction
of the derivative at the initial guess. The Newton’s iteration
can be expressed as follows [4]:

xk+1 = xk − f(xk)
f ′(xk)

(12)

xk 

x 

xk+2 

Figure 5. Newton’s Method

where xk+1 is the next estimate for the solution calculated
from the functions value at the xk. Figure 5 illustrates the
Newton’s iterations. The derivative at the xk location is uti-
lized to guess the zero crossing (therefore the root). The
initial guess (x0) can be selected as the gain and phase im-
balance compensated Q value (Q′(t)), as the solution will
be close to it more than any other constellation point. The
stopping criteria for iterations can be selected by consider-
ing the fact that the noise is also present in the signal and
the computation time increases as the stopping criteria is
stricter. In order to keep the computation cost acceptable,
we stop the iterations if there is less than 0.1% difference
between the last two solutions.

2.4 Noise

The transmitted and received signals are generally cor-
rupted by numerous noise sources such as ambient noise
and noise induced by analog circuits. Due to the random
nature of the noise signal, received symbols cluster around
a discrete location in the constellation diagram. As our
calibration method works continually on the received sym-
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Table 1. BER measurements under several impairments2.

PI GI IIP3 BER BER∗ BER† BERLB

4.4 2.5 9.4 0.030 0.014 0.00033 0.000001
3.3 0.9 9.1 0.008 0.007 0.00024 0.000002
3.7 1.2 8.7 0.018 0.016 0.00048 0.000002
3.2 1.8 9.2 0.014 0.011 0.00032 0.000002
4.3 2.6 9.3 0.034 0.023 0.00093 0.000002
6.0 2.8 9.8 0.044 0.014 0.00039 0.000002
5.2 1.8 9.1 0.032 0.019 0.00067 0.000008
4.8 1.2 9.5 0.016 0.008 0.00050 0.000017
3.9 1.9 9.3 0.022 0.016 0.00083 0.000017
3.3 2.2 9.5 0.020 0.016 0.00085 0.000017
5.4 1.9 9.8 0.023 0.008 0.00040 0.000018
4.7 2.0 9.5 0.023 0.012 0.00055 0.000018
5.4 2.2 8.0 0.079 0.092 0.00610 0.000001

bols, we omit the noise terms from the equations and do not
quantify the noise amount that may be present in the signal.
Since noise is not averaged, it may also be present in the re-
sulting symbols. In order to examine the robustness of our
test methodology, we compute BER for noisy signals.

3 Simulation Results

In order to evaluate the robustness our technique, we
construct an RF transceiver, as illustrated Fig 1, in MAT-
LAB1. We first apply our technique to impose several signal
impairments, such as I-Q gain and phase imbalances, non-
linearity, and noise to the digital baseband data. We then
remove these imbalances sequentially to compute the BER.

As in many communication standards, we specify the ac-
ceptable system BER as 0.001 [7]. In order to measure the
BER accurately, we apply a test signal that consists of 1
Million bits. We particularly focus on systems that have
unacceptable BERs to show that our technique can bring
the BER to within acceptable ranges. We inject noise, IQ
gain and phase imbalances, and non-linear impairments ran-
domly into the system components, as modeled in Equation
4. Table 1 shows the BER results for the RF transceiver
under various impairment conditions. In this table, PI is
the injected phase imbalance (o) , GI is the gain imbalance,
BER is the uncorrected bit error rate, BER∗ is effective
BER after the gain and phase imbalances are corrected, and
BER† is the effective system BER after all impairments
are corrected. The last column in Table 1 shows the theo-

1MATLAB� is a trademark of MathWorks Inc,
http://www.mathworks.com

2PI: Phase imbalance (o), GI: Gain imbalance, BER: Bit error rate with-
out any calibration, BER∗: Bit error rate with gain and phase imbalance
calibration, BER†: Bit error rate with all imbalances are corrected.
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Figure 6. When only the I-Q imbalances are corrected,
the BER may not improve. The uncompensated constel-
lation diagram (left side) has a better BER than I-Q gain
and phase imbalance corrected constellation diagram (right
side).

retical BER based on the injected noise amount. This BER
value corresponds to the theoretical lower-bound our cor-
rection methodology can reach. In all test cases, our pro-
posed method reduces the effective system BER to within
the specified limit of 0.001. Table 1 also shows that in-
terestingly in some cases, the effective BER of the system
increases as the I-Q imbalances are corrected. This odd
behavior is actually due to the non-linearity of the system.
Figure 6 illustrates the un-compensated and the I-Q imbal-
ance corrected version of the constellation diagram for the
first row in Table 1. Circled constellation points move closer
to their decision boundary when the I-Q imbalances are re-
moved. Since our method also compensates for the non-
linear compression, the resulting BER of this system is well
within the acceptable limits.

The computational overhead of the proposed method can
be numerically determined through counting the number of
floating point operations (FLOP). Table 2 show the FLOP
counts for two different test set-ups with 1000 and 20000
bits. When there is no correction applied, the FLOP count
is 194298. This number increases to 372870 when the pro-
posed calibration technique is applied. This amounts to 0.9
times increase in the computation overhead. Furthermore,
when the size of the input stimuli increases 20 times (20000
bits), the FLOP count also increases by 20 times, which in-

Table 2. The number of FLOPs with and without calibra-
tion

# Bits No Correction With Correction
1000 194298 372870
20000 3880298 7441192
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dicates that the proposed calibration technique is in the or-
der of n (O(n)), where n is the input size. We can summa-
rize the computational complexity of our proposed method
as follows:

Fn = K · O(n) (13)

Fw = 1.9 · K · O(n) (14)

where Fn is the FLOP count when there is no correction ap-
plied to the received symbols, Fw is the FLOP count when
the proposed method is applied, K is a fixed constant, and
O(·) is the order in big-O notation.

Based on the computational complexity of symbol de-
termination, the computational overhead of the proposed
method is 90%. Since the symbol determination is a mi-
nor computational effort compared to other signal process-
ing functions, such as compression, coding, and decoding,
the 90% increase compared to this baseline is not be pro-
hibitive.

Table 3. FLOP counts without IIP3 calibration

Method FLOPs
proposed 4263

non-data aided [6] 31864
data aided [5] 17006

Finally, Table 3 shows the FLOP count comparison with
existing data-aided and non-data aided calibration method-
ologies [5],[6]. Since these methodologies calibrate only IQ
gain and phase imbalances, we turn off our IIP3 calibration
for a fair comparison. All three methodologies operate on
the same test signal, which consists of 500 bits and impaired
with 0.1 gain imbalance and 15o phase imbalance. FLOP
counts indicate that our method calibrates IQ imbalances
with minimal number of floating point operations.

4 Conclusion

While the existing I-Q imbalance calibration methods
decrease the bit error rate by compensating the mismatches,
they may not significantly improve the BER for non-linear
devices. In this paper we present a numeric I-Q calibration
technique which employs the characterization data obtained
during product testing in calibration.

Our method significantly improves the system BER even
under non-linear impairments. The computational com-
plexity of the proposed method is well within the acceptable
limits.
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