added ads-b example

bug_fixes_integration_tx
David Michaeli 2021-12-23 00:30:28 +02:00
rodzic 046191ca02
commit 6720e3969a
32 zmienionych plików z 1053 dodań i 684 usunięć

Wyświetl plik

@ -19,8 +19,7 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
########################################################################
add_executable(caribou_dump1090
dump1090.cpp
# SoapySDRProbe.cpp
# SoapyRateTest.cpp
modes.c
)
target_link_libraries(caribou_dump1090 SoapySDR)

Wyświetl plik

@ -1,174 +0,0 @@
// Copyright (c) 2016-2017 Josh Blum
// SPDX-License-Identifier: BSL-1.0
#include <SoapySDR/Device.hpp>
#include <SoapySDR/Formats.hpp>
#include <SoapySDR/Errors.hpp>
#include <string>
#include <cstdlib>
#include <iostream>
#include <stdexcept>
#include <csignal>
#include <chrono>
#include <cstdio>
static sig_atomic_t loopDone = false;
static void sigIntHandler(const int)
{
loopDone = true;
}
void runRateTestStreamLoop(
SoapySDR::Device *device,
SoapySDR::Stream *stream,
const int direction,
const size_t numChans,
const size_t elemSize)
{
//allocate buffers for the stream read/write
const size_t numElems = device->getStreamMTU(stream);
std::vector<std::vector<char>> buffMem(numChans, std::vector<char>(elemSize*numElems));
std::vector<void *> buffs(numChans);
for (size_t i = 0; i < numChans; i++) buffs[i] = buffMem[i].data();
//state collected in this loop
unsigned int overflows(0);
unsigned int underflows(0);
unsigned long long totalSamples(0);
const auto startTime = std::chrono::high_resolution_clock::now();
auto timeLastPrint = std::chrono::high_resolution_clock::now();
auto timeLastSpin = std::chrono::high_resolution_clock::now();
auto timeLastStatus = std::chrono::high_resolution_clock::now();
int spinIndex(0);
std::cout << "Starting stream loop, press Ctrl+C to exit..." << std::endl;
device->activateStream(stream);
signal(SIGINT, sigIntHandler);
while (not loopDone)
{
int ret(0);
int flags(0);
long long timeNs(0);
switch(direction)
{
case SOAPY_SDR_RX:
ret = device->readStream(stream, buffs.data(), numElems, flags, timeNs);
break;
case SOAPY_SDR_TX:
ret = device->writeStream(stream, buffs.data(), numElems, flags, timeNs);
break;
}
if (ret == SOAPY_SDR_TIMEOUT) continue;
if (ret == SOAPY_SDR_OVERFLOW)
{
overflows++;
continue;
}
if (ret == SOAPY_SDR_UNDERFLOW)
{
underflows++;
continue;
}
if (ret < 0)
{
std::cerr << "Unexpected stream error " << SoapySDR::errToStr(ret) << std::endl;
break;
}
totalSamples += ret;
const auto now = std::chrono::high_resolution_clock::now();
if (timeLastSpin + std::chrono::milliseconds(300) < now)
{
timeLastSpin = now;
static const char spin[] = {"|/-\\"};
printf("\b%c", spin[(spinIndex++)%4]);
fflush(stdout);
}
//occasionally read out the stream status (non blocking)
if (timeLastStatus + std::chrono::seconds(1) < now)
{
timeLastStatus = now;
while (true)
{
size_t chanMask; int flags; long long timeNs;
ret = device->readStreamStatus(stream, chanMask, flags, timeNs, 0);
if (ret == SOAPY_SDR_OVERFLOW) overflows++;
else if (ret == SOAPY_SDR_UNDERFLOW) underflows++;
else if (ret == SOAPY_SDR_TIME_ERROR) {}
else break;
}
}
if (timeLastPrint + std::chrono::seconds(5) < now)
{
timeLastPrint = now;
const auto timePassed = std::chrono::duration_cast<std::chrono::microseconds>(now - startTime);
const auto sampleRate = double(totalSamples)/timePassed.count();
printf("\b%g Msps\t%g MBps", sampleRate, sampleRate*numChans*elemSize);
if (overflows != 0) printf("\tOverflows %u", overflows);
if (underflows != 0) printf("\tUnderflows %u", underflows);
printf("\n ");
}
}
device->deactivateStream(stream);
}
int SoapySDRRateTest(
const std::string &argStr,
const double sampleRate,
const std::string &formatStr,
const std::string &channelStr,
const std::string &directionStr)
{
SoapySDR::Device *device(nullptr);
try
{
device = SoapySDR::Device::make(argStr);
//parse the direction to the integer enum
int direction(-1);
if (directionStr == "RX" or directionStr == "rx") direction = SOAPY_SDR_RX;
if (directionStr == "TX" or directionStr == "tx") direction = SOAPY_SDR_TX;
if (direction == -1) throw std::invalid_argument("direction not in RX/TX: " + directionStr);
//build channels list, using KwargsFromString is a easy parsing hack
std::vector<size_t> channels;
for (const auto &pair : SoapySDR::KwargsFromString(channelStr))
{
channels.push_back(std::stoi(pair.first));
}
if (channels.empty()) channels.push_back(0);
//initialize the sample rate for all channels
for (const auto &chan : channels)
{
device->setSampleRate(direction, chan, sampleRate);
}
//create the stream, use the native format
double fullScale(0.0);
const auto format = formatStr.empty() ? device->getNativeStreamFormat(direction, channels.front(), fullScale) : formatStr;
const size_t elemSize = SoapySDR::formatToSize(format);
auto stream = device->setupStream(direction, format, channels);
//run the rate test one setup is complete
std::cout << "Stream format: " << format << std::endl;
std::cout << "Num channels: " << channels.size() << std::endl;
std::cout << "Element size: " << elemSize << " bytes" << std::endl;
std::cout << "Begin " << directionStr << " rate test at " << (sampleRate/1e6) << " Msps" << std::endl;
runRateTestStreamLoop(device, stream, direction, channels.size(), elemSize);
//cleanup stream and device
device->closeStream(stream);
SoapySDR::Device::unmake(device);
}
catch (const std::exception &ex)
{
std::cerr << "Error in rate test: " << ex.what() << std::endl;
SoapySDR::Device::unmake(device);
return EXIT_FAILURE;
}
return EXIT_FAILURE;
}

Wyświetl plik

@ -1,336 +0,0 @@
// Copyright (c) 2015-2017 Josh Blum
// Copyright (c) 2016-2016 Bastille Networks
// SPDX-License-Identifier: BSL-1.0
#include <SoapySDR/Device.hpp>
#include <sstream>
#include <limits>
template <typename Type>
std::string toString(const std::vector<Type> &options)
{
std::stringstream ss;
if (options.empty()) return "";
for (size_t i = 0; i < options.size(); i++)
{
if (not ss.str().empty()) ss << ", ";
ss << options[i];
}
return ss.str();
}
std::string toString(const SoapySDR::Range &range)
{
std::stringstream ss;
ss << "[" << range.minimum() << ", " << range.maximum();
if (range.step() != 0.0) ss << ", " << range.step();
ss << "]";
return ss.str();
}
std::string toString(const SoapySDR::RangeList &range, const double scale)
{
const size_t MAXRLEN = 10; //for abbreviating long lists
std::stringstream ss;
for (size_t i = 0; i < range.size(); i++)
{
if (range.size() >= MAXRLEN and i >= MAXRLEN/2 and i < (range.size()-MAXRLEN/2))
{
if (i == MAXRLEN) ss << ", ...";
continue;
}
if (not ss.str().empty()) ss << ", ";
if (range[i].minimum() == range[i].maximum()) ss << (range[i].minimum()/scale);
else ss << "[" << (range[i].minimum()/scale) << ", " << (range[i].maximum()/scale) << "]";
}
return ss.str();
}
std::string toString(const std::vector<double> &nums, const double scale)
{
std::stringstream ss;
if (nums.size() > 3)
{
ss << "[" << (nums.front()/scale) << ", " << (nums.back()/scale) << "]";
return ss.str();
}
for (size_t i = 0; i < nums.size(); i++)
{
if (not ss.str().empty()) ss << ", ";
ss << (nums[i]/scale);
}
return "[" + ss.str() + "]";
}
std::string toString(const SoapySDR::ArgInfo &argInfo, const std::string indent = " ")
{
std::stringstream ss;
//name, or use key if missing
std::string name = argInfo.name;
if (argInfo.name.empty()) name = argInfo.key;
ss << indent << " * " << name;
//optional description
std::string desc = argInfo.description;
const std::string replace("\n"+indent+" ");
for (size_t pos = 0; (pos=desc.find("\n", pos)) != std::string::npos; pos+=replace.size())
{
desc.replace(pos, 1, replace);
}
if (not desc.empty()) ss << " - " << desc << std::endl << indent << " ";
//other fields
ss << " [key=" << argInfo.key;
if (not argInfo.units.empty()) ss << ", units=" << argInfo.units;
if (not argInfo.value.empty()) ss << ", default=" << argInfo.value;
//type
switch (argInfo.type)
{
case SoapySDR::ArgInfo::BOOL: ss << ", type=bool"; break;
case SoapySDR::ArgInfo::INT: ss << ", type=int"; break;
case SoapySDR::ArgInfo::FLOAT: ss << ", type=float"; break;
case SoapySDR::ArgInfo::STRING: ss << ", type=string"; break;
}
//optional range/enumeration
if (argInfo.range.minimum() < argInfo.range.maximum()) ss << ", range=" << toString(argInfo.range);
if (not argInfo.options.empty()) ss << ", options=(" << toString(argInfo.options) << ")";
ss << "]";
return ss.str();
}
std::string toString(const SoapySDR::ArgInfoList &argInfos)
{
std::stringstream ss;
for (size_t i = 0; i < argInfos.size(); i++)
{
ss << toString(argInfos[i]) << std::endl;
}
return ss.str();
}
std::string sensorReadings(SoapySDR::Device *device)
{
std::stringstream ss;
/*******************************************************************
* Sensor readings
******************************************************************/
std::vector<std::string> sensors = device->listSensors();
for (size_t i = 0; i < sensors.size(); i++)
{
std::string key = sensors[i];
SoapySDR::ArgInfo info = device->getSensorInfo(key);
std::string reading = device->readSensor(key);
ss << " * " << sensors[i];
if (not info.name.empty()) ss << " (" << info.name << ")";
ss << ":";
if (info.range.maximum() > std::numeric_limits<double>::min()) ss << toString(info.range);
ss << toString(info.options);
ss << " " << reading;
if (not info.units.empty()) ss << " " << info.units;
ss << std::endl;
if (not info.description.empty()) ss << " " << info.description << std::endl;
}
return ss.str();
}
std::string channelSensorReadings(SoapySDR::Device *device, const int dir, const size_t chan)
{
std::stringstream ss;
/*******************************************************************
* Channel sensor readings
******************************************************************/
std::vector<std::string> sensors = device->listSensors(dir, chan);
for (size_t i = 0; i < sensors.size(); i++)
{
std::string key = sensors[i];
SoapySDR::ArgInfo info = device->getSensorInfo(dir, chan, key);
std::string reading = device->readSensor(dir, chan, key);
ss << " * " << sensors[i];
if (not info.name.empty()) ss << " (" << info.name << ")";
ss << ":";
if (info.range.maximum() > std::numeric_limits<double>::min()) ss << toString(info.range);
ss << toString(info.options);
ss << " " << reading;
if (not info.units.empty()) ss << " " << info.units;
ss << std::endl;
if (not info.description.empty()) ss << " " << info.description << std::endl;
}
return ss.str();
}
static std::string probeChannel(SoapySDR::Device *device, const int dir, const size_t chan)
{
std::stringstream ss;
std::string dirName = (dir==SOAPY_SDR_TX)?"TX":"RX";
ss << std::endl;
ss << "----------------------------------------------------" << std::endl;
ss << "-- " << dirName << " Channel " << chan << std::endl;
ss << "----------------------------------------------------" << std::endl;
// info
const auto info = device->getChannelInfo(dir, chan);
if (info.size() > 0)
{
ss << " Channel Information:" << std::endl;
for (const auto &it : info)
{
ss << " " << it.first << "=" << it.second << std::endl;
}
}
ss << " Full-duplex: " << (device->getFullDuplex(dir, chan)?"YES":"NO") << std::endl;
ss << " Supports AGC: " << (device->hasGainMode(dir, chan)?"YES":"NO") << std::endl;
//formats
std::string formats = toString(device->getStreamFormats(dir, chan));
if (not formats.empty()) ss << " Stream formats: " << formats << std::endl;
//native
double fullScale = 0.0;
std::string native = device->getNativeStreamFormat(dir, chan, fullScale);
ss << " Native format: " << native << " [full-scale=" << fullScale << "]" << std::endl;
//stream args
std::string streamArgs = toString(device->getStreamArgsInfo(dir, chan));
if (not streamArgs.empty()) ss << " Stream args:" << std::endl << streamArgs;
//antennas
std::string antennas = toString(device->listAntennas(dir, chan));
if (not antennas.empty()) ss << " Antennas: " << antennas << std::endl;
//corrections
std::vector<std::string> correctionsList;
if (device->hasDCOffsetMode(dir, chan)) correctionsList.push_back("DC removal");
if (device->hasDCOffset(dir, chan)) correctionsList.push_back("DC offset");
if (device->hasIQBalance(dir, chan)) correctionsList.push_back("IQ balance");
std::string corrections = toString(correctionsList);
if (not corrections.empty()) ss << " Corrections: " << corrections << std::endl;
//gains
ss << " Full gain range: " << toString(device->getGainRange(dir, chan)) << " dB" << std::endl;
std::vector<std::string> gainsList = device->listGains(dir, chan);
for (size_t i = 0; i < gainsList.size(); i++)
{
const std::string name = gainsList[i];
ss << " " << name << " gain range: " << toString(device->getGainRange(dir, chan, name)) << " dB" << std::endl;
}
//frequencies
ss << " Full freq range: " << toString(device->getFrequencyRange(dir, chan), 1e6) << " MHz" << std::endl;
std::vector<std::string> freqsList = device->listFrequencies(dir, chan);
for (size_t i = 0; i < freqsList.size(); i++)
{
const std::string name = freqsList[i];
ss << " " << name << " freq range: " << toString(device->getFrequencyRange(dir, chan, name), 1e6) << " MHz" << std::endl;
}
//freq args
std::string freqArgs = toString(device->getFrequencyArgsInfo(dir, chan));
if (not freqArgs.empty()) ss << " Tune args:" << std::endl << freqArgs;
//rates
ss << " Sample rates: " << toString(device->getSampleRateRange(dir, chan), 1e6) << " MSps" << std::endl;
//bandwidths
const auto bws = device->getBandwidthRange(dir, chan);
if (not bws.empty()) ss << " Filter bandwidths: " << toString(bws, 1e6) << " MHz" << std::endl;
//sensors
std::string sensors = toString(device->listSensors(dir, chan));
if (not sensors.empty()) ss << " Sensors: " << sensors << std::endl;
ss << channelSensorReadings(device, dir, chan);
//settings
std::string settings = toString(device->getSettingInfo(dir, chan));
if (not settings.empty()) ss << " Other Settings:" << std::endl << settings;
return ss.str();
}
std::string SoapySDRDeviceProbe(SoapySDR::Device *device)
{
std::stringstream ss;
/*******************************************************************
* Identification info
******************************************************************/
ss << std::endl;
ss << "----------------------------------------------------" << std::endl;
ss << "-- Device identification" << std::endl;
ss << "----------------------------------------------------" << std::endl;
ss << " driver=" << device->getDriverKey() << std::endl;
ss << " hardware=" << device->getHardwareKey() << std::endl;
for (const auto &it : device->getHardwareInfo())
{
ss << " " << it.first << "=" << it.second << std::endl;
}
/*******************************************************************
* Available peripherals
******************************************************************/
ss << std::endl;
ss << "----------------------------------------------------" << std::endl;
ss << "-- Peripheral summary" << std::endl;
ss << "----------------------------------------------------" << std::endl;
size_t numRxChans = device->getNumChannels(SOAPY_SDR_RX);
size_t numTxChans = device->getNumChannels(SOAPY_SDR_TX);
ss << " Channels: " << numRxChans << " Rx, " << numTxChans << " Tx" << std::endl;
ss << " Timestamps: " << (device->hasHardwareTime()?"YES":"NO") << std::endl;
std::string clockSources = toString(device->listClockSources());
if (not clockSources.empty()) ss << " Clock sources: " << clockSources << std::endl;
std::string timeSources = toString(device->listTimeSources());
if (not timeSources.empty()) ss << " Time sources: " << timeSources << std::endl;
std::string sensors = toString(device->listSensors());
if (not sensors.empty()) ss << " Sensors: " << sensors << std::endl;
ss << sensorReadings(device);
std::string registers = toString(device->listRegisterInterfaces());
if (not registers.empty()) ss << " Registers: " << registers << std::endl;
std::string settings = toString(device->getSettingInfo());
if (not settings.empty()) ss << " Other Settings:" << std::endl << settings;
std::string gpios = toString(device->listGPIOBanks());
if (not gpios.empty()) ss << " GPIOs: " << gpios << std::endl;
std::string uarts = toString(device->listUARTs());
if (not uarts.empty()) ss << " UARTs: " << uarts << std::endl;
/*******************************************************************
* Per-channel info
******************************************************************/
for (size_t chan = 0; chan < numRxChans; chan++)
{
ss << probeChannel(device, SOAPY_SDR_RX, chan);
}
for (size_t chan = 0; chan < numTxChans; chan++)
{
ss << probeChannel(device, SOAPY_SDR_TX, chan);
}
return ss.str();
}

Wyświetl plik

@ -11,86 +11,20 @@ set(CMAKE_MAKEFILE_DEPENDS
"CMakeFiles/3.18.4/CMakeCCompiler.cmake"
"CMakeFiles/3.18.4/CMakeCXXCompiler.cmake"
"CMakeFiles/3.18.4/CMakeSystem.cmake"
"/usr/share/cmake-3.18/Modules/CMakeCCompiler.cmake.in"
"/usr/share/cmake-3.18/Modules/CMakeCCompilerABI.c"
"/usr/share/cmake-3.18/Modules/CMakeCInformation.cmake"
"/usr/share/cmake-3.18/Modules/CMakeCXXCompiler.cmake.in"
"/usr/share/cmake-3.18/Modules/CMakeCXXCompilerABI.cpp"
"/usr/share/cmake-3.18/Modules/CMakeCXXInformation.cmake"
"/usr/share/cmake-3.18/Modules/CMakeCheckCompilerFlagCommonPatterns.cmake"
"/usr/share/cmake-3.18/Modules/CMakeCommonLanguageInclude.cmake"
"/usr/share/cmake-3.18/Modules/CMakeCompilerIdDetection.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCCompiler.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCXXCompiler.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCompileFeatures.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCompilerABI.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineCompilerId.cmake"
"/usr/share/cmake-3.18/Modules/CMakeDetermineSystem.cmake"
"/usr/share/cmake-3.18/Modules/CMakeFindBinUtils.cmake"
"/usr/share/cmake-3.18/Modules/CMakeGenericSystem.cmake"
"/usr/share/cmake-3.18/Modules/CMakeInitializeConfigs.cmake"
"/usr/share/cmake-3.18/Modules/CMakeLanguageInformation.cmake"
"/usr/share/cmake-3.18/Modules/CMakeParseImplicitIncludeInfo.cmake"
"/usr/share/cmake-3.18/Modules/CMakeParseImplicitLinkInfo.cmake"
"/usr/share/cmake-3.18/Modules/CMakeSystem.cmake.in"
"/usr/share/cmake-3.18/Modules/CMakeSystemSpecificInformation.cmake"
"/usr/share/cmake-3.18/Modules/CMakeSystemSpecificInitialize.cmake"
"/usr/share/cmake-3.18/Modules/CMakeTestCCompiler.cmake"
"/usr/share/cmake-3.18/Modules/CMakeTestCXXCompiler.cmake"
"/usr/share/cmake-3.18/Modules/CMakeTestCompilerCommon.cmake"
"/usr/share/cmake-3.18/Modules/CMakeUnixFindMake.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/ADSP-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/ARMCC-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/ARMClang-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/AppleClang-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Borland-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Bruce-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/CMakeCommonCompilerMacros.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Clang-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Clang-DetermineCompilerInternal.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Comeau-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Compaq-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Compaq-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Cray-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Embarcadero-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Fujitsu-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GHS-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU-C.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU-CXX.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU-FindBinUtils.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/GNU.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/HP-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/HP-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/IAR-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/IBMCPP-C-DetermineVersionInternal.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/IBMCPP-CXX-DetermineVersionInternal.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Intel-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/MSVC-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/NVIDIA-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/OpenWatcom-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/PGI-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/PathScale-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/SCO-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/SDCC-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/SunPro-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/SunPro-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/TI-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/TinyCC-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/VisualAge-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/VisualAge-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/Watcom-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/XL-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/XL-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/XLClang-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/XLClang-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/zOS-C-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Compiler/zOS-CXX-DetermineCompiler.cmake"
"/usr/share/cmake-3.18/Modules/Internal/CMakeCheckCompilerFlag.cmake"
"/usr/share/cmake-3.18/Modules/Internal/FeatureTesting.cmake"
"/usr/share/cmake-3.18/Modules/Platform/Linux-Determine-CXX.cmake"
"/usr/share/cmake-3.18/Modules/Platform/Linux-GNU-C.cmake"
"/usr/share/cmake-3.18/Modules/Platform/Linux-GNU-CXX.cmake"
"/usr/share/cmake-3.18/Modules/Platform/Linux-GNU.cmake"
@ -106,11 +40,6 @@ set(CMAKE_MAKEFILE_OUTPUTS
# Byproducts of CMake generate step:
set(CMAKE_MAKEFILE_PRODUCTS
"CMakeFiles/3.18.4/CMakeSystem.cmake"
"CMakeFiles/3.18.4/CMakeCCompiler.cmake"
"CMakeFiles/3.18.4/CMakeCXXCompiler.cmake"
"CMakeFiles/3.18.4/CMakeCCompiler.cmake"
"CMakeFiles/3.18.4/CMakeCXXCompiler.cmake"
"CMakeFiles/CMakeDirectoryInformation.cmake"
)

Wyświetl plik

@ -93,12 +93,12 @@ clean: CMakeFiles/caribou_dump1090.dir/clean
CMakeFiles/caribou_dump1090.dir/all:
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/depend
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/build
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --progress-dir=/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles --progress-num=1,2 "Built target caribou_dump1090"
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --progress-dir=/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles --progress-num=1,2,3 "Built target caribou_dump1090"
.PHONY : CMakeFiles/caribou_dump1090.dir/all
# Build rule for subdir invocation for target.
CMakeFiles/caribou_dump1090.dir/rule: cmake_check_build_system
$(CMAKE_COMMAND) -E cmake_progress_start /home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles 2
$(CMAKE_COMMAND) -E cmake_progress_start /home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles 3
$(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 CMakeFiles/caribou_dump1090.dir/all
$(CMAKE_COMMAND) -E cmake_progress_start /home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles 0
.PHONY : CMakeFiles/caribou_dump1090.dir/rule

Wyświetl plik

@ -0,0 +1,8 @@
#IncludeRegexLine: ^[ ]*[#%][ ]*(include|import)[ ]*[<"]([^">]+)([">])
#IncludeRegexScan: ^.*$
#IncludeRegexComplain: ^$
#IncludeRegexTransform:

Wyświetl plik

@ -39,4 +39,20 @@ sys/types.h
-
sys/stat.h
-
modes.h
/home/pi/projects/cariboulite/examples/cpp/modes.h
/home/pi/projects/cariboulite/examples/cpp/modes.h
string.h
-
stdlib.h
-
stdint.h
-
unistd.h
-
math.h
-
sys/time.h
-

Wyświetl plik

@ -1,8 +1,17 @@
# The set of languages for which implicit dependencies are needed:
set(CMAKE_DEPENDS_LANGUAGES
"C"
"CXX"
)
# The set of files for implicit dependencies of each language:
set(CMAKE_DEPENDS_CHECK_C
"/home/pi/projects/cariboulite/examples/cpp/modes.c" "/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles/caribou_dump1090.dir/modes.c.o"
)
set(CMAKE_C_COMPILER_ID "GNU")
# The include file search paths:
set(CMAKE_C_TARGET_INCLUDE_PATH
)
set(CMAKE_DEPENDS_CHECK_CXX
"/home/pi/projects/cariboulite/examples/cpp/dump1090.cpp" "/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o"
)

Wyświetl plik

@ -89,17 +89,32 @@ CMakeFiles/caribou_dump1090.dir/dump1090.cpp.s: cmake_force
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green "Compiling CXX source to assembly CMakeFiles/caribou_dump1090.dir/dump1090.cpp.s"
/usr/bin/c++ $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -S /home/pi/projects/cariboulite/examples/cpp/dump1090.cpp -o CMakeFiles/caribou_dump1090.dir/dump1090.cpp.s
CMakeFiles/caribou_dump1090.dir/modes.c.o: CMakeFiles/caribou_dump1090.dir/flags.make
CMakeFiles/caribou_dump1090.dir/modes.c.o: ../modes.c
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green --progress-dir=/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles --progress-num=$(CMAKE_PROGRESS_2) "Building C object CMakeFiles/caribou_dump1090.dir/modes.c.o"
/usr/bin/cc $(C_DEFINES) $(C_INCLUDES) $(C_FLAGS) -o CMakeFiles/caribou_dump1090.dir/modes.c.o -c /home/pi/projects/cariboulite/examples/cpp/modes.c
CMakeFiles/caribou_dump1090.dir/modes.c.i: cmake_force
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green "Preprocessing C source to CMakeFiles/caribou_dump1090.dir/modes.c.i"
/usr/bin/cc $(C_DEFINES) $(C_INCLUDES) $(C_FLAGS) -E /home/pi/projects/cariboulite/examples/cpp/modes.c > CMakeFiles/caribou_dump1090.dir/modes.c.i
CMakeFiles/caribou_dump1090.dir/modes.c.s: cmake_force
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green "Compiling C source to assembly CMakeFiles/caribou_dump1090.dir/modes.c.s"
/usr/bin/cc $(C_DEFINES) $(C_INCLUDES) $(C_FLAGS) -S /home/pi/projects/cariboulite/examples/cpp/modes.c -o CMakeFiles/caribou_dump1090.dir/modes.c.s
# Object files for target caribou_dump1090
caribou_dump1090_OBJECTS = \
"CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o"
"CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o" \
"CMakeFiles/caribou_dump1090.dir/modes.c.o"
# External object files for target caribou_dump1090
caribou_dump1090_EXTERNAL_OBJECTS =
caribou_dump1090: CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o
caribou_dump1090: CMakeFiles/caribou_dump1090.dir/modes.c.o
caribou_dump1090: CMakeFiles/caribou_dump1090.dir/build.make
caribou_dump1090: CMakeFiles/caribou_dump1090.dir/link.txt
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green --bold --progress-dir=/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles --progress-num=$(CMAKE_PROGRESS_2) "Linking CXX executable caribou_dump1090"
@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green --bold --progress-dir=/home/pi/projects/cariboulite/examples/cpp/build/CMakeFiles --progress-num=$(CMAKE_PROGRESS_3) "Linking CXX executable caribou_dump1090"
$(CMAKE_COMMAND) -E cmake_link_script CMakeFiles/caribou_dump1090.dir/link.txt --verbose=$(VERBOSE)
# Rule to build all files generated by this target.

Wyświetl plik

@ -1,10 +1,11 @@
file(REMOVE_RECURSE
"CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o"
"CMakeFiles/caribou_dump1090.dir/modes.c.o"
"caribou_dump1090"
"caribou_dump1090.pdb"
)
# Per-language clean rules from dependency scanning.
foreach(lang CXX)
foreach(lang C CXX)
include(CMakeFiles/caribou_dump1090.dir/cmake_clean_${lang}.cmake OPTIONAL)
endforeach()

Wyświetl plik

@ -1,5 +1,9 @@
# CMAKE generated file: DO NOT EDIT!
# Generated by "Unix Makefiles" Generator, CMake Version 3.18
CMakeFiles/caribou_dump1090.dir/modes.c.o
/home/pi/projects/cariboulite/examples/cpp/modes.c
/home/pi/projects/cariboulite/examples/cpp/modes.h
CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o
/home/pi/projects/cariboulite/examples/cpp/dump1090.cpp
/home/pi/projects/cariboulite/examples/cpp/modes.h

Wyświetl plik

@ -1,5 +1,9 @@
# CMAKE generated file: DO NOT EDIT!
# Generated by "Unix Makefiles" Generator, CMake Version 3.18
CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o: ../dump1090.cpp
CMakeFiles/caribou_dump1090.dir/modes.c.o: ../modes.c
CMakeFiles/caribou_dump1090.dir/modes.c.o: ../modes.h
CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o: ../dump1090.cpp
CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o: ../modes.h

Wyświetl plik

@ -1,7 +1,14 @@
# CMAKE generated file: DO NOT EDIT!
# Generated by "Unix Makefiles" Generator, CMake Version 3.18
# compile C with /usr/bin/cc
# compile CXX with /usr/bin/c++
C_DEFINES =
C_INCLUDES =
C_FLAGS = -O3 -DNDEBUG -fPIE
CXX_DEFINES =
CXX_INCLUDES =

Wyświetl plik

@ -1 +1 @@
/usr/bin/c++ -O3 -DNDEBUG CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o -o caribou_dump1090 -lSoapySDR
/usr/bin/c++ -O3 -DNDEBUG CMakeFiles/caribou_dump1090.dir/dump1090.cpp.o CMakeFiles/caribou_dump1090.dir/modes.c.o -o caribou_dump1090 -lSoapySDR

Wyświetl plik

@ -1,3 +1,4 @@
CMAKE_PROGRESS_1 = 1
CMAKE_PROGRESS_2 = 2
CMAKE_PROGRESS_3 = 3

Wyświetl plik

@ -169,6 +169,33 @@ dump1090.cpp.s:
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/dump1090.cpp.s
.PHONY : dump1090.cpp.s
modes.o: modes.c.o
.PHONY : modes.o
# target to build an object file
modes.c.o:
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/modes.c.o
.PHONY : modes.c.o
modes.i: modes.c.i
.PHONY : modes.i
# target to preprocess a source file
modes.c.i:
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/modes.c.i
.PHONY : modes.c.i
modes.s: modes.c.s
.PHONY : modes.s
# target to generate assembly for a file
modes.c.s:
$(MAKE) $(MAKESILENT) -f CMakeFiles/caribou_dump1090.dir/build.make CMakeFiles/caribou_dump1090.dir/modes.c.s
.PHONY : modes.c.s
# Help Target
help:
@echo "The following are some of the valid targets for this Makefile:"
@ -181,6 +208,9 @@ help:
@echo "... dump1090.o"
@echo "... dump1090.i"
@echo "... dump1090.s"
@echo "... modes.o"
@echo "... modes.i"
@echo "... modes.s"
.PHONY : help

Plik binarny nie jest wyświetlany.

Wyświetl plik

@ -1,12 +1,10 @@
// Copyright (c) 2014-2021 Josh Blum
// SPDX-License-Identifier: BSL-1.0
#include <SoapySDR/Version.hpp>
#include <SoapySDR/Modules.hpp>
#include <SoapySDR/Registry.hpp>
#include <SoapySDR/Device.hpp>
#include <SoapySDR/ConverterRegistry.hpp>
#include <algorithm> //sort, min, max
#include <algorithm>
#include <cstdlib>
#include <cstddef>
#include <iostream>
@ -17,15 +15,7 @@
#include <getopt.h>
#include <sys/types.h>
#include <sys/stat.h>
std::string SoapySDRDeviceProbe(SoapySDR::Device *);
std::string sensorReadings(SoapySDR::Device *);
int SoapySDRRateTest(
const std::string &argStr,
const double sampleRate,
const std::string &formatStr,
const std::string &channelStr,
const std::string &directionStr);
#include "modes.h"
/***********************************************************************
* Print the banner
@ -70,6 +60,11 @@ static void sigIntHandler(const int)
loopDone = true;
}
void onModeSMessage(mode_s_t *self, struct mode_s_msg *mm)
{
printf("Got message from flight %s at altitude %d\n", mm->flight, mm->altitude);
}
void runSoapyProcess(
SoapySDR::Device *device,
SoapySDR::Stream *stream,
@ -80,20 +75,14 @@ void runSoapyProcess(
//allocate buffers for the stream read/write
const size_t numElems = device->getStreamMTU(stream);
std::vector<std::vector<char>> buffMem(numChans, std::vector<char>(elemSize*numElems));
std::vector<unsigned short> magMem(numElems);
std::vector<void *> buffs(numChans);
for (size_t i = 0; i < numChans; i++) buffs[i] = buffMem[i].data();
//state collected in this loop
unsigned int overflows(0);
unsigned int underflows(0);
unsigned long long totalSamples(0);
const auto startTime = std::chrono::high_resolution_clock::now();
auto timeLastPrint = std::chrono::high_resolution_clock::now();
auto timeLastSpin = std::chrono::high_resolution_clock::now();
auto timeLastStatus = std::chrono::high_resolution_clock::now();
int spinIndex(0);
// MODE-S Stuff
mode_s_t state;
mode_s_init(&state);
std::cout << "Num Elements / read = " << numElems << std::endl;
std::cout << "Starting stream loop, press Ctrl+C to exit..." << std::endl;
device->activateStream(stream);
signal(SIGINT, sigIntHandler);
@ -107,12 +96,12 @@ void runSoapyProcess(
if (ret == SOAPY_SDR_TIMEOUT) continue;
if (ret == SOAPY_SDR_OVERFLOW)
{
overflows++;
//overflows++;
continue;
}
if (ret == SOAPY_SDR_UNDERFLOW)
{
underflows++;
//underflows++;
continue;
}
if (ret < 0)
@ -120,47 +109,19 @@ void runSoapyProcess(
std::cerr << "Unexpected stream error " << ret << std::endl;
break;
}
//std::cout << ret << std::endl;
totalSamples += ret;
//totalSamples += ret;
const auto now = std::chrono::high_resolution_clock::now();
/*if (timeLastSpin + std::chrono::milliseconds(300) < now)
{
timeLastSpin = now;
static const char spin[] = {"|/-\\"};
printf("\b%c", spin[(spinIndex++)%4]);
fflush(stdout);
}*/
// compute the magnitude of the signal
mode_s_compute_magnitude_vector((short*)(buffs[0]), magMem.data(), ret);
//occasionally read out the stream status (non blocking)
if (timeLastStatus + std::chrono::seconds(1) < now)
{
timeLastStatus = now;
while (true)
{
size_t chanMask; int flags; long long timeNs;
ret = device->readStreamStatus(stream, chanMask, flags, timeNs, 0);
if (ret == SOAPY_SDR_OVERFLOW) overflows++;
else if (ret == SOAPY_SDR_UNDERFLOW) underflows++;
else if (ret == SOAPY_SDR_TIME_ERROR) {}
else break;
}
}
if (timeLastPrint + std::chrono::seconds(5) < now)
{
timeLastPrint = now;
const auto timePassed = std::chrono::duration_cast<std::chrono::microseconds>(now - startTime);
const auto sampleRate = double(totalSamples)/timePassed.count();
printf("\b%g Msps\t%g MBps", sampleRate, sampleRate*numChans*elemSize);
if (overflows != 0) printf("\tOverflows %u", overflows);
if (underflows != 0) printf("\tUnderflows %u", underflows);
printf("\n ");
}
// detect Mode S messages in the signal and call on_msg with each message
mode_s_detect(&state, magMem.data(), ret, onModeSMessage);
}
device->deactivateStream(stream);
}
/***********************************************************************
* Main entry point
**********************************************************************/
@ -184,9 +145,10 @@ int main(int argc, char *argv[])
// set the sample rate
device->setSampleRate(SOAPY_SDR_RX, channels[0], 4e6);
//create the stream, use the native format
device->setBandwidth(SOAPY_SDR_RX, channels[0], 2500e3);
device->setGainMode(SOAPY_SDR_RX, channels[0], true);
//create the stream, use the native format
const auto format = device->getNativeStreamFormat(SOAPY_SDR_RX, channels.front(), fullScale);
const size_t elemSize = SoapySDR::formatToSize(format);
auto stream = device->setupStream(SOAPY_SDR_RX, format, channels);

Wyświetl plik

@ -0,0 +1,747 @@
#include "modes.h"
#define MODE_S_PREAMBLE_US 8 // microseconds
#define MODE_S_LONG_MSG_BITS 112
#define MODE_S_SHORT_MSG_BITS 56
#define MODE_S_FULL_LEN (MODE_S_PREAMBLE_US+MODE_S_LONG_MSG_BITS)
#define MODE_S_ICAO_CACHE_TTL 60 // Time to live of cached addresses.
static uint16_t maglut[129*129*2];
static int maglut_initialized = 0;
// =============================== Initialization ===========================
void mode_s_init(mode_s_t *self) {
int i, q;
self->fix_errors = 1;
self->check_crc = 1;
self->aggressive = 0;
// Allocate the ICAO address cache. We use two uint32_t for every entry
// because it's a addr / timestamp pair for every entry
memset(&self->icao_cache, 0, sizeof(self->icao_cache));
// Populate the I/Q -> Magnitude lookup table. It is used because sqrt or
// round may be expensive and may vary a lot depending on the libc used.
//
// We scale to 0-255 range multiplying by 1.4 in order to ensure that every
// different I/Q pair will result in a different magnitude value, not losing
// any resolution.
if (!maglut_initialized) {
for (i = 0; i <= 128; i++) {
for (q = 0; q <= 128; q++) {
maglut[i*129+q] = round(sqrt(i*i+q*q)*360);
}
}
maglut_initialized = 1;
}
}
// ===================== Mode S detection and decoding =====================
// Parity table for MODE S Messages.
//
// The table contains 112 elements, every element corresponds to a bit set in
// the message, starting from the first bit of actual data after the preamble.
//
// For messages of 112 bit, the whole table is used. For messages of 56 bits
// only the last 56 elements are used.
//
// The algorithm is as simple as xoring all the elements in this table for
// which the corresponding bit on the message is set to 1.
//
// The latest 24 elements in this table are set to 0 as the checksum at the end
// of the message should not affect the computation.
//
// Note: this function can be used with DF11 and DF17, other modes have the CRC
// xored with the sender address as they are reply to interrogations, but a
// casual listener can't split the address from the checksum.
uint32_t mode_s_checksum_table[] = {
0x3935ea, 0x1c9af5, 0xf1b77e, 0x78dbbf, 0xc397db, 0x9e31e9, 0xb0e2f0, 0x587178,
0x2c38bc, 0x161c5e, 0x0b0e2f, 0xfa7d13, 0x82c48d, 0xbe9842, 0x5f4c21, 0xd05c14,
0x682e0a, 0x341705, 0xe5f186, 0x72f8c3, 0xc68665, 0x9cb936, 0x4e5c9b, 0xd8d449,
0x939020, 0x49c810, 0x24e408, 0x127204, 0x093902, 0x049c81, 0xfdb444, 0x7eda22,
0x3f6d11, 0xe04c8c, 0x702646, 0x381323, 0xe3f395, 0x8e03ce, 0x4701e7, 0xdc7af7,
0x91c77f, 0xb719bb, 0xa476d9, 0xadc168, 0x56e0b4, 0x2b705a, 0x15b82d, 0xf52612,
0x7a9309, 0xc2b380, 0x6159c0, 0x30ace0, 0x185670, 0x0c2b38, 0x06159c, 0x030ace,
0x018567, 0xff38b7, 0x80665f, 0xbfc92b, 0xa01e91, 0xaff54c, 0x57faa6, 0x2bfd53,
0xea04ad, 0x8af852, 0x457c29, 0xdd4410, 0x6ea208, 0x375104, 0x1ba882, 0x0dd441,
0xf91024, 0x7c8812, 0x3e4409, 0xe0d800, 0x706c00, 0x383600, 0x1c1b00, 0x0e0d80,
0x0706c0, 0x038360, 0x01c1b0, 0x00e0d8, 0x00706c, 0x003836, 0x001c1b, 0xfff409,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000,
0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000, 0x000000
};
uint32_t mode_s_checksum(unsigned char *msg, int bits) {
uint32_t crc = 0;
int offset = (bits == 112) ? 0 : (112-56);
int j;
for(j = 0; j < bits; j++) {
int byte = j/8;
int bit = j%8;
int bitmask = 1 << (7-bit);
// If bit is set, xor with corresponding table entry.
if (msg[byte] & bitmask)
crc ^= mode_s_checksum_table[j+offset];
}
return crc; // 24 bit checksum.
}
// Given the Downlink Format (DF) of the message, return the message length in
// bits.
int mode_s_msg_len_by_type(int type) {
if (type == 16 || type == 17 ||
type == 19 || type == 20 ||
type == 21)
return MODE_S_LONG_MSG_BITS;
else
return MODE_S_SHORT_MSG_BITS;
}
// Try to fix single bit errors using the checksum. On success modifies the
// original buffer with the fixed version, and returns the position of the
// error bit. Otherwise if fixing failed -1 is returned.
int fix_single_bit_errors(unsigned char *msg, int bits) {
int j;
unsigned char aux[MODE_S_LONG_MSG_BITS/8];
for (j = 0; j < bits; j++) {
int byte = j/8;
int bitmask = 1 << (7-(j%8));
uint32_t crc1, crc2;
memcpy(aux, msg, bits/8);
aux[byte] ^= bitmask; // Flip j-th bit.
crc1 = ((uint32_t)aux[(bits/8)-3] << 16) |
((uint32_t)aux[(bits/8)-2] << 8) |
(uint32_t)aux[(bits/8)-1];
crc2 = mode_s_checksum(aux, bits);
if (crc1 == crc2) {
// The error is fixed. Overwrite the original buffer with the
// corrected sequence, and returns the error bit position.
memcpy(msg, aux, bits/8);
return j;
}
}
return -1;
}
// Similar to fix_single_bit_errors() but try every possible two bit
// combination. This is very slow and should be tried only against DF17
// messages that don't pass the checksum, and only in Aggressive Mode.
int fix_two_bits_errors(unsigned char *msg, int bits) {
int j, i;
unsigned char aux[MODE_S_LONG_MSG_BITS/8];
for (j = 0; j < bits; j++) {
int byte1 = j/8;
int bitmask1 = 1 << (7-(j%8));
// Don't check the same pairs multiple times, so i starts from j+1
for (i = j+1; i < bits; i++) {
int byte2 = i/8;
int bitmask2 = 1 << (7-(i%8));
uint32_t crc1, crc2;
memcpy(aux, msg, bits/8);
aux[byte1] ^= bitmask1; // Flip j-th bit.
aux[byte2] ^= bitmask2; // Flip i-th bit.
crc1 = ((uint32_t)aux[(bits/8)-3] << 16) |
((uint32_t)aux[(bits/8)-2] << 8) |
(uint32_t)aux[(bits/8)-1];
crc2 = mode_s_checksum(aux, bits);
if (crc1 == crc2) {
// The error is fixed. Overwrite the original buffer with the
// corrected sequence, and returns the error bit position.
memcpy(msg, aux, bits/8);
// We return the two bits as a 16 bit integer by shifting 'i'
// on the left. This is possible since 'i' will always be
// non-zero because i starts from j+1.
return j | (i<<8);
}
}
}
return -1;
}
// Hash the ICAO address to index our cache of MODE_S_ICAO_CACHE_LEN elements,
// that is assumed to be a power of two.
uint32_t icao_cache_has_addr(uint32_t a) {
// The following three rounds wil make sure that every bit affects every
// output bit with ~ 50% of probability.
a = ((a >> 16) ^ a) * 0x45d9f3b;
a = ((a >> 16) ^ a) * 0x45d9f3b;
a = ((a >> 16) ^ a);
return a & (MODE_S_ICAO_CACHE_LEN-1);
}
// Add the specified entry to the cache of recently seen ICAO addresses. Note
// that we also add a timestamp so that we can make sure that the entry is only
// valid for MODE_S_ICAO_CACHE_TTL seconds.
void add_recently_seen_icao_addr(mode_s_t *self, uint32_t addr) {
uint32_t h = icao_cache_has_addr(addr);
self->icao_cache[h*2] = addr;
self->icao_cache[h*2+1] = (uint32_t) time(NULL);
}
// Returns 1 if the specified ICAO address was seen in a DF format with proper
// checksum (not xored with address) no more than * MODE_S_ICAO_CACHE_TTL
// seconds ago. Otherwise returns 0.
int icao_addr_was_recently_seen(mode_s_t *self, uint32_t addr) {
uint32_t h = icao_cache_has_addr(addr);
uint32_t a = self->icao_cache[h*2];
int32_t t = self->icao_cache[h*2+1];
return a && a == addr && time(NULL)-t <= MODE_S_ICAO_CACHE_TTL;
}
// If the message type has the checksum xored with the ICAO address, try to
// brute force it using a list of recently seen ICAO addresses.
//
// Do this in a brute-force fashion by xoring the predicted CRC with the
// address XOR checksum field in the message. This will recover the address: if
// we found it in our cache, we can assume the message is ok.
//
// This function expects mm->msgtype and mm->msgbits to be correctly populated
// by the caller.
//
// On success the correct ICAO address is stored in the mode_s_msg structure in
// the aa3, aa2, and aa1 fiedls.
//
// If the function successfully recovers a message with a correct checksum it
// returns 1. Otherwise 0 is returned.
int brute_force_ap(mode_s_t *self, unsigned char *msg, struct mode_s_msg *mm) {
unsigned char aux[MODE_S_LONG_MSG_BYTES];
int msgtype = mm->msgtype;
int msgbits = mm->msgbits;
if (msgtype == 0 || // Short air surveillance
msgtype == 4 || // Surveillance, altitude reply
msgtype == 5 || // Surveillance, identity reply
msgtype == 16 || // Long Air-Air survillance
msgtype == 20 || // Comm-A, altitude request
msgtype == 21 || // Comm-A, identity request
msgtype == 24) // Comm-C ELM
{
uint32_t addr;
uint32_t crc;
int lastbyte = (msgbits/8)-1;
// Work on a copy.
memcpy(aux, msg, msgbits/8);
// Compute the CRC of the message and XOR it with the AP field so that
// we recover the address, because:
//
// (ADDR xor CRC) xor CRC = ADDR.
crc = mode_s_checksum(aux, msgbits);
aux[lastbyte] ^= crc & 0xff;
aux[lastbyte-1] ^= (crc >> 8) & 0xff;
aux[lastbyte-2] ^= (crc >> 16) & 0xff;
// If the obtained address exists in our cache we consider the message
// valid.
addr = aux[lastbyte] | (aux[lastbyte-1] << 8) | (aux[lastbyte-2] << 16);
if (icao_addr_was_recently_seen(self, addr)) {
mm->aa1 = aux[lastbyte-2];
mm->aa2 = aux[lastbyte-1];
mm->aa3 = aux[lastbyte];
return 1;
}
}
return 0;
}
// Decode the 13 bit AC altitude field (in DF 20 and others). Returns the
// altitude, and set 'unit' to either MODE_S_UNIT_METERS or MDOES_UNIT_FEETS.
int decode_ac13_field(unsigned char *msg, int *unit) {
int m_bit = msg[3] & (1<<6);
int q_bit = msg[3] & (1<<4);
if (!m_bit) {
*unit = MODE_S_UNIT_FEET;
if (q_bit) {
// N is the 11 bit integer resulting from the removal of bit Q and M
int n = ((msg[2]&31)<<6) |
((msg[3]&0x80)>>2) |
((msg[3]&0x20)>>1) |
(msg[3]&15);
// The final altitude is due to the resulting number multiplied by
// 25, minus 1000.
return n*25-1000;
} else {
// TODO: Implement altitude where Q=0 and M=0
}
} else {
*unit = MODE_S_UNIT_METERS;
// TODO: Implement altitude when meter unit is selected.
}
return 0;
}
// Decode the 12 bit AC altitude field (in DF 17 and others). Returns the
// altitude or 0 if it can't be decoded.
int decode_ac12_field(unsigned char *msg, int *unit) {
int q_bit = msg[5] & 1;
if (q_bit) {
// N is the 11 bit integer resulting from the removal of bit Q
*unit = MODE_S_UNIT_FEET;
int n = ((msg[5]>>1)<<4) | ((msg[6]&0xF0) >> 4);
// The final altitude is due to the resulting number multiplied by 25,
// minus 1000.
return n*25-1000;
} else {
return 0;
}
}
static const char *ais_charset = "?ABCDEFGHIJKLMNOPQRSTUVWXYZ????? ???????????????0123456789??????";
// Decode a raw Mode S message demodulated as a stream of bytes by
// mode_s_detect(), and split it into fields populating a mode_s_msg structure.
void mode_s_decode(mode_s_t *self, struct mode_s_msg *mm, unsigned char *msg) {
uint32_t crc2; // Computed CRC, used to verify the message CRC.
// Work on our local copy
memcpy(mm->msg, msg, MODE_S_LONG_MSG_BYTES);
msg = mm->msg;
// Get the message type ASAP as other operations depend on this
mm->msgtype = msg[0]>>3; // Downlink Format
mm->msgbits = mode_s_msg_len_by_type(mm->msgtype);
// CRC is always the last three bytes.
mm->crc = ((uint32_t)msg[(mm->msgbits/8)-3] << 16) |
((uint32_t)msg[(mm->msgbits/8)-2] << 8) |
(uint32_t)msg[(mm->msgbits/8)-1];
crc2 = mode_s_checksum(msg, mm->msgbits);
// Check CRC and fix single bit errors using the CRC when possible (DF 11 and 17).
mm->errorbit = -1; // No error
mm->crcok = (mm->crc == crc2);
if (!mm->crcok && self->fix_errors && (mm->msgtype == 11 || mm->msgtype == 17)) {
if ((mm->errorbit = fix_single_bit_errors(msg, mm->msgbits)) != -1) {
mm->crc = mode_s_checksum(msg, mm->msgbits);
mm->crcok = 1;
} else if (self->aggressive && mm->msgtype == 17 &&
(mm->errorbit = fix_two_bits_errors(msg, mm->msgbits)) != -1) {
mm->crc = mode_s_checksum(msg, mm->msgbits);
mm->crcok = 1;
}
}
// Note that most of the other computation happens *after* we fix the
// single bit errors, otherwise we would need to recompute the fields
// again.
mm->ca = msg[0] & 7; // Responder capabilities.
// ICAO address
mm->aa1 = msg[1];
mm->aa2 = msg[2];
mm->aa3 = msg[3];
// DF 17 type (assuming this is a DF17, otherwise not used)
mm->metype = msg[4] >> 3; // Extended squitter message type.
mm->mesub = msg[4] & 7; // Extended squitter message subtype.
// Fields for DF4,5,20,21
mm->fs = msg[0] & 7; // Flight status for DF4,5,20,21
mm->dr = msg[1] >> 3 & 31; // Request extraction of downlink request.
mm->um = ((msg[1] & 7)<<3)| // Request extraction of downlink request.
msg[2]>>5;
// In the squawk (identity) field bits are interleaved like that (message
// bit 20 to bit 32):
//
// C1-A1-C2-A2-C4-A4-ZERO-B1-D1-B2-D2-B4-D4
//
// So every group of three bits A, B, C, D represent an integer from 0 to
// 7.
//
// The actual meaning is just 4 octal numbers, but we convert it into a
// base ten number tha happens to represent the four octal numbers.
//
// For more info: http://en.wikipedia.org/wiki/Gillham_code
{
int a, b, c, d;
a = ((msg[3] & 0x80) >> 5) |
((msg[2] & 0x02) >> 0) |
((msg[2] & 0x08) >> 3);
b = ((msg[3] & 0x02) << 1) |
((msg[3] & 0x08) >> 2) |
((msg[3] & 0x20) >> 5);
c = ((msg[2] & 0x01) << 2) |
((msg[2] & 0x04) >> 1) |
((msg[2] & 0x10) >> 4);
d = ((msg[3] & 0x01) << 2) |
((msg[3] & 0x04) >> 1) |
((msg[3] & 0x10) >> 4);
mm->identity = a*1000 + b*100 + c*10 + d;
}
// DF 11 & 17: try to populate our ICAO addresses whitelist. DFs with an AP
// field (xored addr and crc), try to decode it.
if (mm->msgtype != 11 && mm->msgtype != 17) {
// Check if we can check the checksum for the Downlink Formats where
// the checksum is xored with the aircraft ICAO address. We try to
// brute force it using a list of recently seen aircraft addresses.
if (brute_force_ap(self, msg, mm)) {
// We recovered the message, mark the checksum as valid.
mm->crcok = 1;
} else {
mm->crcok = 0;
}
} else {
// If this is DF 11 or DF 17 and the checksum was ok, we can add this
// address to the list of recently seen addresses.
if (mm->crcok && mm->errorbit == -1) {
uint32_t addr = (mm->aa1 << 16) | (mm->aa2 << 8) | mm->aa3;
add_recently_seen_icao_addr(self, addr);
}
}
// Decode 13 bit altitude for DF0, DF4, DF16, DF20
if (mm->msgtype == 0 || mm->msgtype == 4 ||
mm->msgtype == 16 || mm->msgtype == 20) {
mm->altitude = decode_ac13_field(msg, &mm->unit);
}
// Decode extended squitter specific stuff.
if (mm->msgtype == 17) {
// Decode the extended squitter message.
if (mm->metype >= 1 && mm->metype <= 4) {
// Aircraft Identification and Category
mm->aircraft_type = mm->metype-1;
mm->flight[0] = (ais_charset)[msg[5]>>2];
mm->flight[1] = ais_charset[((msg[5]&3)<<4)|(msg[6]>>4)];
mm->flight[2] = ais_charset[((msg[6]&15)<<2)|(msg[7]>>6)];
mm->flight[3] = ais_charset[msg[7]&63];
mm->flight[4] = ais_charset[msg[8]>>2];
mm->flight[5] = ais_charset[((msg[8]&3)<<4)|(msg[9]>>4)];
mm->flight[6] = ais_charset[((msg[9]&15)<<2)|(msg[10]>>6)];
mm->flight[7] = ais_charset[msg[10]&63];
mm->flight[8] = '\0';
} else if (mm->metype >= 9 && mm->metype <= 18) {
// Airborne position Message
mm->fflag = msg[6] & (1<<2);
mm->tflag = msg[6] & (1<<3);
mm->altitude = decode_ac12_field(msg, &mm->unit);
mm->raw_latitude = ((msg[6] & 3) << 15) |
(msg[7] << 7) |
(msg[8] >> 1);
mm->raw_longitude = ((msg[8]&1) << 16) |
(msg[9] << 8) |
msg[10];
} else if (mm->metype == 19 && mm->mesub >= 1 && mm->mesub <= 4) {
// Airborne Velocity Message
if (mm->mesub == 1 || mm->mesub == 2) {
mm->ew_dir = (msg[5]&4) >> 2;
mm->ew_velocity = ((msg[5]&3) << 8) | msg[6];
mm->ns_dir = (msg[7]&0x80) >> 7;
mm->ns_velocity = ((msg[7]&0x7f) << 3) | ((msg[8]&0xe0) >> 5);
mm->vert_rate_source = (msg[8]&0x10) >> 4;
mm->vert_rate_sign = (msg[8]&0x8) >> 3;
mm->vert_rate = ((msg[8]&7) << 6) | ((msg[9]&0xfc) >> 2);
// Compute velocity and angle from the two speed components
mm->velocity = sqrt(mm->ns_velocity*mm->ns_velocity+
mm->ew_velocity*mm->ew_velocity);
if (mm->velocity) {
int ewv = mm->ew_velocity;
int nsv = mm->ns_velocity;
double heading;
if (mm->ew_dir) ewv *= -1;
if (mm->ns_dir) nsv *= -1;
heading = atan2(ewv, nsv);
// Convert to degrees.
mm->heading = heading * 360 / (M_PI*2);
// We don't want negative values but a 0-360 scale.
if (mm->heading < 0) mm->heading += 360;
} else {
mm->heading = 0;
}
} else if (mm->mesub == 3 || mm->mesub == 4) {
mm->heading_is_valid = msg[5] & (1<<2);
mm->heading = (360.0/128) * (((msg[5] & 3) << 5) |
(msg[6] >> 3));
}
}
}
mm->phase_corrected = 0; // Set to 1 by the caller if needed.
}
// Turn I/Q samples pointed by `data` into the magnitude vector pointed by `mag`
void mode_s_compute_magnitude_vector(short *data, uint16_t *mag, uint32_t size)
{
uint32_t j;
// Compute the magnitude vector. It's just SQRT(I^2 + Q^2), but we rescale
// to the 0-255 range to exploit the full resolution.
/*for (j = 0; j < size; j += 2) {
int i = data[j]-127;
int q = data[j+1]-127;
if (i < 0) i = -i;
if (q < 0) q = -q;
mag[j/2] = maglut[i*129+q];
}*/
for (j=0; j<size; j+=2)
{
int i = data[j];
int q = data[j+1];
mag[j/2]=sqrt(i*i + q*q);
}
}
// Return -1 if the message is out of fase left-side
// Return 1 if the message is out of fase right-size
// Return 0 if the message is not particularly out of phase.
//
// Note: this function will access mag[-1], so the caller should make sure to
// call it only if we are not at the start of the current buffer.
int detect_out_of_phase(uint16_t *mag) {
if (mag[3] > mag[2]/3) return 1;
if (mag[10] > mag[9]/3) return 1;
if (mag[6] > mag[7]/3) return -1;
if (mag[-1] > mag[1]/3) return -1;
return 0;
}
// This function does not really correct the phase of the message, it just
// applies a transformation to the first sample representing a given bit:
//
// If the previous bit was one, we amplify it a bit.
// If the previous bit was zero, we decrease it a bit.
//
// This simple transformation makes the message a bit more likely to be
// correctly decoded for out of phase messages:
//
// When messages are out of phase there is more uncertainty in sequences of the
// same bit multiple times, since 11111 will be transmitted as continuously
// altering magnitude (high, low, high, low...)
//
// However because the message is out of phase some part of the high is mixed
// in the low part, so that it is hard to distinguish if it is a zero or a one.
//
// However when the message is out of phase passing from 0 to 1 or from 1 to 0
// happens in a very recognizable way, for instance in the 0 -> 1 transition,
// magnitude goes low, high, high, low, and one of of the two middle samples
// the high will be *very* high as part of the previous or next high signal
// will be mixed there.
//
// Applying our simple transformation we make more likely if the current bit is
// a zero, to detect another zero. Symmetrically if it is a one it will be more
// likely to detect a one because of the transformation. In this way similar
// levels will be interpreted more likely in the correct way.
void apply_phase_correction(uint16_t *mag) {
int j;
mag += 16; // Skip preamble.
for (j = 0; j < (MODE_S_LONG_MSG_BITS-1)*2; j += 2) {
if (mag[j] > mag[j+1]) {
// One
mag[j+2] = (mag[j+2] * 5) / 4;
} else {
// Zero
mag[j+2] = (mag[j+2] * 4) / 5;
}
}
}
// Detect a Mode S messages inside the magnitude buffer pointed by 'mag' and of
// size 'maglen' bytes. Every detected Mode S message is convert it into a
// stream of bits and passed to the function to display it.
void mode_s_detect(mode_s_t *self, uint16_t *mag, uint32_t maglen, mode_s_callback_t cb) {
unsigned char bits[MODE_S_LONG_MSG_BITS];
unsigned char msg[MODE_S_LONG_MSG_BITS/2];
uint16_t aux[MODE_S_LONG_MSG_BITS*2];
uint32_t j;
int use_correction = 0;
// The Mode S preamble is made of impulses of 0.5 microseconds at the
// following time offsets:
//
// 0 - 0.5 usec: first impulse.
// 1.0 - 1.5 usec: second impulse.
// 3.5 - 4 usec: third impulse.
// 4.5 - 5 usec: last impulse.
//
// Since we are sampling at 2 Mhz every sample in our magnitude vector is
// 0.5 usec, so the preamble will look like this, assuming there is an
// impulse at offset 0 in the array:
//
// 0 -----------------
// 1 -
// 2 ------------------
// 3 --
// 4 -
// 5 --
// 6 -
// 7 ------------------
// 8 --
// 9 -------------------
for (j = 0; j < maglen - MODE_S_FULL_LEN*2; j++) {
int low, high, delta, i, errors;
int good_message = 0;
if (use_correction) goto good_preamble; // We already checked it.
// First check of relations between the first 10 samples representing a
// valid preamble. We don't even investigate further if this simple
// test is not passed.
if (!(mag[j] > mag[j+1] &&
mag[j+1] < mag[j+2] &&
mag[j+2] > mag[j+3] &&
mag[j+3] < mag[j] &&
mag[j+4] < mag[j] &&
mag[j+5] < mag[j] &&
mag[j+6] < mag[j] &&
mag[j+7] > mag[j+8] &&
mag[j+8] < mag[j+9] &&
mag[j+9] > mag[j+6]))
{
continue;
}
// The samples between the two spikes must be < than the average of the
// high spikes level. We don't test bits too near to the high levels as
// signals can be out of phase so part of the energy can be in the near
// samples.
high = (mag[j]+mag[j+2]+mag[j+7]+mag[j+9])/6;
if (mag[j+4] >= high ||
mag[j+5] >= high)
{
continue;
}
// Similarly samples in the range 11-14 must be low, as it is the space
// between the preamble and real data. Again we don't test bits too
// near to high levels, see above.
if (mag[j+11] >= high ||
mag[j+12] >= high ||
mag[j+13] >= high ||
mag[j+14] >= high)
{
continue;
}
good_preamble:
// If the previous attempt with this message failed, retry using
// magnitude correction.
if (use_correction) {
memcpy(aux, mag+j+MODE_S_PREAMBLE_US*2, sizeof(aux));
if (j && detect_out_of_phase(mag+j)) {
apply_phase_correction(mag+j);
}
// TODO ... apply other kind of corrections.
}
// Decode all the next 112 bits, regardless of the actual message size.
// We'll check the actual message type later.
errors = 0;
for (i = 0; i < MODE_S_LONG_MSG_BITS*2; i += 2) {
low = mag[j+i+MODE_S_PREAMBLE_US*2];
high = mag[j+i+MODE_S_PREAMBLE_US*2+1];
delta = low-high;
if (delta < 0) delta = -delta;
if (i > 0 && delta < 256) {
bits[i/2] = bits[i/2-1];
} else if (low == high) {
// Checking if two adiacent samples have the same magnitude is
// an effective way to detect if it's just random noise that
// was detected as a valid preamble.
bits[i/2] = 2; // error
if (i < MODE_S_SHORT_MSG_BITS*2) errors++;
} else if (low > high) {
bits[i/2] = 1;
} else {
// (low < high) for exclusion
bits[i/2] = 0;
}
}
// Restore the original message if we used magnitude correction.
if (use_correction)
memcpy(mag+j+MODE_S_PREAMBLE_US*2, aux, sizeof(aux));
// Pack bits into bytes
for (i = 0; i < MODE_S_LONG_MSG_BITS; i += 8) {
msg[i/8] =
bits[i]<<7 |
bits[i+1]<<6 |
bits[i+2]<<5 |
bits[i+3]<<4 |
bits[i+4]<<3 |
bits[i+5]<<2 |
bits[i+6]<<1 |
bits[i+7];
}
int msgtype = msg[0]>>3;
int msglen = mode_s_msg_len_by_type(msgtype)/8;
// Last check, high and low bits are different enough in magnitude to
// mark this as real message and not just noise?
delta = 0;
for (i = 0; i < msglen*8*2; i += 2) {
delta += abs(mag[j+i+MODE_S_PREAMBLE_US*2]-
mag[j+i+MODE_S_PREAMBLE_US*2+1]);
}
delta /= msglen*4;
// Filter for an average delta of three is small enough to let almost
// every kind of message to pass, but high enough to filter some random
// noise.
if (delta < 10*255) {
use_correction = 0;
continue;
}
// If we reached this point, and error is zero, we are very likely with
// a Mode S message in our hands, but it may still be broken and CRC
// may not be correct. This is handled by the next layer.
if (errors == 0 || (self->aggressive && errors < 3)) {
struct mode_s_msg mm;
// Decode the received message
mode_s_decode(self, &mm, msg);
// Skip this message if we are sure it's fine.
if (mm.crcok) {
j += (MODE_S_PREAMBLE_US+(msglen*8))*2;
good_message = 1;
if (use_correction)
mm.phase_corrected = 1;
}
// Pass data to the next layer
if (self->check_crc == 0 || mm.crcok) {
cb(self, &mm);
}
}
// Retry with phase correction if possible.
if (!good_message && !use_correction) {
j--;
use_correction = 1;
} else {
use_correction = 0;
}
}
}

Wyświetl plik

@ -0,0 +1,88 @@
#ifndef __MODE_S_DECODER_H
#define __MODE_S_DECODER_H
#ifdef __cplusplus
extern "C" {
#endif
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <math.h>
#include <sys/time.h>
#define MODE_S_ICAO_CACHE_LEN 1024 // Power of two required
#define MODE_S_LONG_MSG_BYTES (112/8)
#define MODE_S_UNIT_FEET 0
#define MODE_S_UNIT_METERS 1
// Program state
typedef struct {
// Internal state
uint32_t icao_cache[sizeof(uint32_t)*MODE_S_ICAO_CACHE_LEN*2]; // Recently seen ICAO addresses cache
// Configuration
int fix_errors; // Single bit error correction if true
int aggressive; // Aggressive detection algorithm
int check_crc; // Only display messages with good CRC
} mode_s_t;
// The struct we use to store information about a decoded message
struct mode_s_msg {
// Generic fields
unsigned char msg[MODE_S_LONG_MSG_BYTES]; // Binary message
int msgbits; // Number of bits in message
int msgtype; // Downlink format #
int crcok; // True if CRC was valid
uint32_t crc; // Message CRC
int errorbit; // Bit corrected. -1 if no bit corrected.
int aa1, aa2, aa3; // ICAO Address bytes 1 2 and 3
int phase_corrected; // True if phase correction was applied.
// DF 11
int ca; // Responder capabilities.
// DF 17
int metype; // Extended squitter message type.
int mesub; // Extended squitter message subtype.
int heading_is_valid;
int heading;
int aircraft_type;
int fflag; // 1 = Odd, 0 = Even CPR message.
int tflag; // UTC synchronized?
int raw_latitude; // Non decoded latitude
int raw_longitude; // Non decoded longitude
char flight[9]; // 8 chars flight number.
int ew_dir; // 0 = East, 1 = West.
int ew_velocity; // E/W velocity.
int ns_dir; // 0 = North, 1 = South.
int ns_velocity; // N/S velocity.
int vert_rate_source; // Vertical rate source.
int vert_rate_sign; // Vertical rate sign.
int vert_rate; // Vertical rate.
int velocity; // Computed from EW and NS velocity.
// DF4, DF5, DF20, DF21
int fs; // Flight status for DF4,5,20,21
int dr; // Request extraction of downlink request.
int um; // Request extraction of downlink request.
int identity; // 13 bits identity (Squawk).
// Fields used by multiple message types.
int altitude, unit;
};
typedef void (*mode_s_callback_t)(mode_s_t *self, struct mode_s_msg *mm);
void mode_s_init(mode_s_t *self);
void mode_s_compute_magnitude_vector(short *data, uint16_t *mag, uint32_t size);
void mode_s_detect(mode_s_t *self, uint16_t *mag, uint32_t maglen, mode_s_callback_t);
void mode_s_decode(mode_s_t *self, struct mode_s_msg *mm, unsigned char *msg);
#ifdef __cplusplus
}
#endif
#endif

Wyświetl plik

@ -49,6 +49,7 @@
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/kfifo.h>
#define BCM2835_SMI_IMPLEMENTATION
#include <linux/broadcom/bcm2835_smi.h>
@ -228,10 +229,10 @@ void bcm2835_smi_set_regs_from_settings(struct bcm2835_smi_instance *inst)
// Additions (DM) <..
smics_temp |= SMICS_INTR; // Generate interrupt while RXR = 1
//smics_temp |= SMICS_INTR; // Generate interrupt while RXR = 1
// RXR = 1: RX FIFO is at least ¾ full or the transfer has finished and the
// FIFO still needs reading. The transfer direction must be set to READ
smics_temp |= SMICS_INTT; // Generate interrupt while TXW = 1
//smics_temp |= SMICS_INTT; // Generate interrupt while TXW = 1
// TXW = 1: TX FIFO is less than ¼ full and the transfer direction is set to WRITE.
// ..> Additions (DM)
@ -690,6 +691,50 @@ static void smi_dma_write_sgl(
}
}
ssize_t bcm2835_smi_user_dma_read_to_fifo(
struct bcm2835_smi_instance *inst,
struct kfifo *fifo,
size_t fifo_len)
{
struct dma_async_tx_descriptor *desc;
struct scatterlist sg[2];
unsigned int ret;
size_t n_bytes;
ret = kfifo_dma_in_prepare(fifo, sg, ARRAY_SIZE(sg), fifo_len);
if (ret <= 0)
{
// no space in fifo, return 0;
return 0;
}
n_bytes = sg[0].length + sg[1].length;
smi_disable(inst, DMA_DEV_TO_MEM);
desc = smi_dma_submit_sgl(inst, sg, ret, DMA_DEV_TO_MEM, NULL);
dma_async_issue_pending(inst->dma_chan);
if (inst->settings.data_width == SMI_WIDTH_8BIT)
{
smi_init_programmed_read(inst, n_bytes);
}
else
{
smi_init_programmed_read(inst, n_bytes / 2);
}
/*if (dma_wait_for_async_tx(desc) == DMA_ERROR)
{
smi_dump_context_labelled(inst, "DMA timeout!");
return 0;
}*/
kfifo_dma_in_finish(fifo, n_bytes);
return n_bytes;
}
EXPORT_SYMBOL(bcm2835_smi_user_dma_read_to_fifo);
ssize_t bcm2835_smi_user_dma(
struct bcm2835_smi_instance *inst,
enum dma_transfer_direction dma_dir,

Wyświetl plik

@ -184,6 +184,11 @@ static long smi_stream_ioctl(struct file *file, unsigned int cmd, unsigned long
return ret;
}
ssize_t bcm2835_smi_user_dma_read_to_fifo(
struct bcm2835_smi_instance *inst,
struct kfifo *fifo,
size_t fifo_len);
int reader_thread_stream_function(void *pv)
{
struct bcm2835_smi_bounce_info *bounce = NULL;
@ -198,6 +203,12 @@ int reader_thread_stream_function(void *pv)
continue;
}
/*count = bcm2835_smi_user_dma_read_to_fifo(smi_inst, &inst->rx_fifo, FIFO_SIZE_MULTIPLIER * DMA_BOUNCE_BUFFER_SIZE);
if (count)
{
wake_up_interruptible(&inst->readable);
}*/
count = bcm2835_smi_user_dma(smi_inst, DMA_DEV_TO_MEM, inst->rx_buffer,
DMA_BOUNCE_BUFFER_SIZE, &bounce);
//printk("count1 = %d\n", count);
@ -211,7 +222,7 @@ int reader_thread_stream_function(void *pv)
}
//count = 0;//dma_bounce_user(DMA_DEV_TO_MEM, inst->rx_buffer, DMA_BOUNCE_BUFFER_SIZE, bounce);
/* Wait for current chunk to complete: */
// Wait for current chunk to complete:
if (down_timeout(&bounce->callback_sem, msecs_to_jiffies(1000)))
{
printk("DMA bounce timed out");

Wyświetl plik

@ -259,7 +259,7 @@ int cariboulite_set_rx_bandwidth(cariboulite_radios_st* radios,
at86rf215_radio_f_cut_en fcut = at86rf215_radio_rx_f_cut_half_fs;
// Automatically calculate the digital f_cut
/*if (rx_bw >= at86rf215_radio_rx_bw_BW160KHZ_IF250KHZ && rx_bw <= at86rf215_radio_rx_bw_BW500KHZ_IF500KHZ)
if (rx_bw >= at86rf215_radio_rx_bw_BW160KHZ_IF250KHZ && rx_bw <= at86rf215_radio_rx_bw_BW500KHZ_IF500KHZ)
fcut = at86rf215_radio_rx_f_cut_0_25_half_fs;
else if (rx_bw >= at86rf215_radio_rx_bw_BW630KHZ_IF1000KHZ && rx_bw <= at86rf215_radio_rx_bw_BW630KHZ_IF1000KHZ)
fcut = at86rf215_radio_rx_f_cut_0_375_half_fs;
@ -268,7 +268,7 @@ int cariboulite_set_rx_bandwidth(cariboulite_radios_st* radios,
else if (rx_bw >= at86rf215_radio_rx_bw_BW1250KHZ_IF2000KHZ && rx_bw <= at86rf215_radio_rx_bw_BW1250KHZ_IF2000KHZ)
fcut = at86rf215_radio_rx_f_cut_0_75_half_fs;
else
fcut = at86rf215_radio_rx_f_cut_half_fs;*/
fcut = at86rf215_radio_rx_f_cut_half_fs;
rad->rx_fcut = fcut;
@ -643,8 +643,10 @@ int cariboulite_set_frequency( cariboulite_radios_st* radios,
double f_rf_mod_26 = (f_rf / 26e6);
f_rf_mod_32 -= (uint64_t)(f_rf_mod_32);
f_rf_mod_26 -= (uint64_t)(f_rf_mod_26);
f_rf_mod_32 *= 32e6;
f_rf_mod_26 *= 26e6;
if (f_rf_mod_32 > 16e6) f_rf_mod_32 = 32e6 - f_rf_mod_32;
if (f_rf_mod_26 > 13e6) f_rf_mod_26 = 13e6 - f_rf_mod_26;
if (f_rf_mod_26 > 13e6) f_rf_mod_26 = 26e6 - f_rf_mod_26;
ext_ref_choice = f_rf_mod_32 > f_rf_mod_26 ? cariboulite_ext_ref_32mhz : cariboulite_ext_ref_26mhz;
cariboulite_setup_ext_ref (rad->cariboulite_sys, ext_ref_choice);
@ -668,9 +670,10 @@ int cariboulite_set_frequency( cariboulite_radios_st* radios,
conversion_direction = conversion_dir_up;
}
//-------------------------------------
else if ( f_rf >= CARIBOULITE_2G4_MIN &&
else if ( f_rf > CARIBOULITE_2G4_MIN &&
f_rf <= CARIBOULITE_2G4_MAX )
{
cariboulite_setup_ext_ref (rad->cariboulite_sys, cariboulite_ext_ref_off);
// region #2 - bypass mode
// setup modem frequency <= f_rf
modem_act_freq = (double)at86rf215_setup_channel (&rad->cariboulite_sys->modem,

Wyświetl plik

@ -280,17 +280,17 @@ int cariboulite_setup_ext_ref ( cariboulite_st *sys, cariboulite_ext_ref_freq_en
{
case cariboulite_ext_ref_26mhz:
ZF_LOGD("Setting ext_ref = 26MHz");
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_4ma, at86rf215_clock_out_freq_26mhz);
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_2ma, at86rf215_clock_out_freq_26mhz);
rffc507x_setup_reference_freq(&sys->mixer, 26e6);
break;
case cariboulite_ext_ref_32mhz:
ZF_LOGD("Setting ext_ref = 32MHz");
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_4ma, at86rf215_clock_out_freq_32mhz);
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_2ma, at86rf215_clock_out_freq_32mhz);
rffc507x_setup_reference_freq(&sys->mixer, 32e6);
break;
case cariboulite_ext_ref_off:
ZF_LOGD("Setting ext_ref = OFF");
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_4ma, at86rf215_clock_out_freq_off);
at86rf215_set_clock_output(&sys->modem, at86rf215_drive_current_2ma, at86rf215_clock_out_freq_off);
default:
return -1;
break;
@ -355,7 +355,7 @@ int cariboulite_init_submodules (cariboulite_st* sys)
at86rf215_iq_interface_config_st modem_iq_config = {
.loopback_enable = 0,
.drv_strength = at86rf215_iq_drive_current_4ma,
.drv_strength = at86rf215_iq_drive_current_2ma,
.common_mode_voltage = at86rf215_iq_common_mode_v_ieee1596_1v2,
.tx_control_with_iq_if = false,
.radio09_mode = at86rf215_iq_if_mode,

Wyświetl plik

@ -8746,7 +8746,7 @@ void gpioTerminate(void)
{
int i;
printf("gpioTerminate\n");
//printf("gpioTerminate\n");
DBG(DBG_USER, "");
if (!libInitialised) return;
@ -8765,7 +8765,7 @@ void gpioTerminate(void)
initKillDMA(dmaOut);
}
printf("gpioTerminate - reset DMA\n");
//printf("gpioTerminate - reset DMA\n");
#ifndef EMBEDDED_IN_VM
if ((gpioCfg.internals & PI_CFG_STATS) &&
@ -8804,12 +8804,12 @@ void gpioTerminate(void)
}
#endif
printf("gpioTerminate - initReleaseResources\n");
//printf("gpioTerminate - initReleaseResources\n");
initReleaseResources();
printf("gpioTerminate - initReleaseResources finished\n");
//printf("gpioTerminate - initReleaseResources finished\n");
fflush(NULL);
printf("gpioTerminate - finished FFlush\n");
//printf("gpioTerminate - finished FFlush\n");
libInitialised = 0;
}

Wyświetl plik

@ -149,8 +149,8 @@ int rffc507x_init( rffc507x_st* dev,
set_RFFC507X_P2CTV(dev, 12);
set_RFFC507X_P1CTV(dev, 12);
set_RFFC507X_RGBYP(dev, 1);
set_RFFC507X_P2MIXIDD(dev, 2);
set_RFFC507X_P1MIXIDD(dev, 2);
set_RFFC507X_P2MIXIDD(dev, 6);
set_RFFC507X_P1MIXIDD(dev, 6);
// Others
set_RFFC507X_LDEN(dev, 1);

Wyświetl plik

@ -25,7 +25,7 @@ Cariboulite::Cariboulite(const SoapySDR::Kwargs &args)
for (int i = 0; i < 4; i++)
{
int stream_id = CARIBOU_SMI_GET_STREAM_ID(types[i], channels[i]);
sample_queues[i] = new SampleQueue(1024*1024/2, NUM_SAMPLEQUEUE_BUFS);
sample_queues[i] = new SampleQueue(getStreamMTU(NULL)*NUM_BYTES_PER_CPLX_ELEM, NUM_SAMPLEQUEUE_BUFS);
int dir = (types[i] == caribou_smi_stream_type_write)? SOAPY_SDR_TX : SOAPY_SDR_RX;
int ch = (channels[i] == caribou_smi_channel_900)? cariboulite_channel_s1g : cariboulite_channel_6g;
sample_queues[i]->AttachStreamId(stream_id, dir, ch);
@ -33,7 +33,7 @@ Cariboulite::Cariboulite(const SoapySDR::Kwargs &args)
cariboulite_init_radios(&radios, &sess.cariboulite_sys);
SoapySDR_logf(SOAPY_SDR_INFO, "Cariboulite c'tor");
//SoapySDR_logf(SOAPY_SDR_INFO, "Cariboulite c'tor");
// TODO: Exception when error
}
@ -47,7 +47,7 @@ Cariboulite::~Cariboulite()
{
delete sample_queues[i];
}
SoapySDR_logf(SOAPY_SDR_INFO, "Cariboulite d'tor");
//SoapySDR_logf(SOAPY_SDR_INFO, "Cariboulite d'tor");
}
/*******************************************************************

Wyświetl plik

@ -30,7 +30,7 @@ enum Cariboulite_Format
};
//#define BUFFER_SIZE_MS ( 10 )
#define NUM_SAMPLEQUEUE_BUFS ( 10 )
#define NUM_SAMPLEQUEUE_BUFS ( 3 )
#define NUM_BYTES_PER_CPLX_ELEM ( 4 )
//#define GET_MTU_MS(ms) ( 4000*(ms) )
//#define GET_MTU_MS_BYTES(ms) ( GET_MTU_MS(ms) * NUM_BYTES_PER_CPLX_ELEM )

Wyświetl plik

@ -47,7 +47,7 @@ SampleQueue::SampleQueue(int mtu_bytes, int num_buffers)
SampleQueue::~SampleQueue()
{
//printf("~SampleQueue streamID: %d, dir: %d, channel: %d\n", stream_id, stream_dir, stream_channel);
SoapySDR_logf(SOAPY_SDR_INFO, "~SampleQueue streamID: %d, dir: %d, channel: %d", stream_id, stream_dir, stream_channel);
//SoapySDR_logf(SOAPY_SDR_INFO, "~SampleQueue streamID: %d, dir: %d, channel: %d", stream_id, stream_dir, stream_channel);
stream_id = -1;
stream_dir = -1;

Wyświetl plik

@ -64,11 +64,11 @@ SoapyCaribouliteSession::~SoapyCaribouliteSession(void)
{
std::lock_guard<std::mutex> lock(sessionMutex);
//printf("~SoapyCaribouliteSession, sessionCount: %ld\n", sessionCount);
SoapySDR_logf(SOAPY_SDR_INFO, "~SoapyCaribouliteSession, sessionCount: %ld", sessionCount);
//SoapySDR_logf(SOAPY_SDR_INFO, "~SoapyCaribouliteSession, sessionCount: %ld", sessionCount);
sessionCount--;
if (sessionCount == 0)
{
cariboulite_release_driver(&cariboulite_sys);
}
SoapySDR_logf(SOAPY_SDR_INFO, "~SoapyCaribouliteSession CaribouLite released");
//SoapySDR_logf(SOAPY_SDR_INFO, "~SoapyCaribouliteSession CaribouLite released");
}

Wyświetl plik

@ -246,8 +246,8 @@ SoapySDR::Stream *Cariboulite::setupStream(const int direction,
}
}
SoapySDR_logf(SOAPY_SDR_INFO, "finished setup stream, stream_id = %d, CW=%d", stream_id, cw);
return (SoapySDR::Stream *)((void*)stream_id);
//SoapySDR_logf(SOAPY_SDR_INFO, "finished setup stream, stream_id = %d, CW=%d", stream_id, cw);
return (SoapySDR::Stream *)((void*)(stream_id));
}
//========================================================
@ -258,7 +258,7 @@ SoapySDR::Stream *Cariboulite::setupStream(const int direction,
*/
void Cariboulite::closeStream(SoapySDR::Stream *stream)
{
SoapySDR_logf(SOAPY_SDR_INFO, "closeStream");
//SoapySDR_logf(SOAPY_SDR_INFO, "closeStream");
if (stream == NULL) return;
int stream_id = (intptr_t)stream;
@ -278,7 +278,7 @@ void Cariboulite::closeStream(SoapySDR::Stream *stream)
size_t Cariboulite::getStreamMTU(SoapySDR::Stream *stream) const
{
//printf("getStreamMTU\n");
return 1024*1024/2; // # milliseconds of buffer
return 1024 * 1024 / 2 / 4; // # milliseconds of buffer
}
//========================================================
@ -305,7 +305,7 @@ int Cariboulite::activateStream(SoapySDR::Stream *stream,
const size_t numElems)
{
//printf("activateStream\n");
SoapySDR_logf(SOAPY_SDR_INFO, "activateStream");
//SoapySDR_logf(SOAPY_SDR_INFO, "activateStream");
int stream_id = (intptr_t)stream;
cariboulite_activate_channel(&radios,
@ -336,7 +336,7 @@ int Cariboulite::activateStream(SoapySDR::Stream *stream,
*/
int Cariboulite::deactivateStream(SoapySDR::Stream *stream, const int flags, const long long timeNs)
{
SoapySDR_logf(SOAPY_SDR_INFO, "deactivateStream");
//SoapySDR_logf(SOAPY_SDR_INFO, "deactivateStream");
int stream_id = (intptr_t)stream;
if ((cariboulite_channel_en)sample_queues[stream_id]->is_cw == 0)