(function () { var /* * Rusha, a JavaScript implementation of the Secure Hash Algorithm, SHA-1, * as defined in FIPS PUB 180-1, tuned for high performance with large inputs. * (http://github.com/srijs/rusha) * * Inspired by Paul Johnstons implementation (http://pajhome.org.uk/crypt/md5). * * Copyright (c) 2013 Sam Rijs (http://awesam.de). * Released under the terms of the MIT license as follows: * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ util = { getDataType: function (data) { if (typeof data === 'string') { return 'string'; } if (data instanceof Array) { return 'array'; } if (typeof global !== 'undefined' && global.Buffer && global.Buffer.isBuffer(data)) { return 'buffer'; } if (data instanceof ArrayBuffer) { return 'arraybuffer'; } if (data.buffer instanceof ArrayBuffer) { return 'view'; } if (data instanceof Blob) { return 'blob'; } throw new Error('Unsupported data type.'); } }; function Rusha(chunkSize) { 'use strict'; var // Private object structure. self$2 = { fill: 0 }; var // Calculate the length of buffer that the sha1 routine uses // including the padding. padlen = function (len) { for (len += 9; len % 64 > 0; len += 1); return len; }; var padZeroes = function (bin, len) { var h8 = new Uint8Array(bin.buffer); var om = len % 4, align = len - om; switch (om) { case 0: h8[align + 3] = 0; case 1: h8[align + 2] = 0; case 2: h8[align + 1] = 0; case 3: h8[align + 0] = 0; } for (var i$2 = (len >> 2) + 1; i$2 < bin.length; i$2++) bin[i$2] = 0; }; var padData = function (bin, chunkLen, msgLen) { bin[chunkLen >> 2] |= 128 << 24 - (chunkLen % 4 << 3); // To support msgLen >= 2 GiB, use a float division when computing the // high 32-bits of the big-endian message length in bits. bin[((chunkLen >> 2) + 2 & ~15) + 14] = msgLen / (1 << 29) | 0; bin[((chunkLen >> 2) + 2 & ~15) + 15] = msgLen << 3; }; var // Convert a binary string and write it to the heap. // A binary string is expected to only contain char codes < 256. convStr = function (H8, H32, start, len, off) { var str = this, i$2, om = off % 4, lm = (len + om) % 4, j = len - lm; switch (om) { case 0: H8[off] = str.charCodeAt(start + 3); case 1: H8[off + 1 - (om << 1) | 0] = str.charCodeAt(start + 2); case 2: H8[off + 2 - (om << 1) | 0] = str.charCodeAt(start + 1); case 3: H8[off + 3 - (om << 1) | 0] = str.charCodeAt(start); } if (len < lm + om) { return; } for (i$2 = 4 - om; i$2 < j; i$2 = i$2 + 4 | 0) { H32[off + i$2 >> 2] = str.charCodeAt(start + i$2) << 24 | str.charCodeAt(start + i$2 + 1) << 16 | str.charCodeAt(start + i$2 + 2) << 8 | str.charCodeAt(start + i$2 + 3); } switch (lm) { case 3: H8[off + j + 1 | 0] = str.charCodeAt(start + j + 2); case 2: H8[off + j + 2 | 0] = str.charCodeAt(start + j + 1); case 1: H8[off + j + 3 | 0] = str.charCodeAt(start + j); } }; var // Convert a buffer or array and write it to the heap. // The buffer or array is expected to only contain elements < 256. convBuf = function (H8, H32, start, len, off) { var buf = this, i$2, om = off % 4, lm = (len + om) % 4, j = len - lm; switch (om) { case 0: H8[off] = buf[start + 3]; case 1: H8[off + 1 - (om << 1) | 0] = buf[start + 2]; case 2: H8[off + 2 - (om << 1) | 0] = buf[start + 1]; case 3: H8[off + 3 - (om << 1) | 0] = buf[start]; } if (len < lm + om) { return; } for (i$2 = 4 - om; i$2 < j; i$2 = i$2 + 4 | 0) { H32[off + i$2 >> 2 | 0] = buf[start + i$2] << 24 | buf[start + i$2 + 1] << 16 | buf[start + i$2 + 2] << 8 | buf[start + i$2 + 3]; } switch (lm) { case 3: H8[off + j + 1 | 0] = buf[start + j + 2]; case 2: H8[off + j + 2 | 0] = buf[start + j + 1]; case 1: H8[off + j + 3 | 0] = buf[start + j]; } }; var convBlob = function (H8, H32, start, len, off) { var blob = this, i$2, om = off % 4, lm = (len + om) % 4, j = len - lm; var buf = new Uint8Array(reader.readAsArrayBuffer(blob.slice(start, start + len))); switch (om) { case 0: H8[off] = buf[3]; case 1: H8[off + 1 - (om << 1) | 0] = buf[2]; case 2: H8[off + 2 - (om << 1) | 0] = buf[1]; case 3: H8[off + 3 - (om << 1) | 0] = buf[0]; } if (len < lm + om) { return; } for (i$2 = 4 - om; i$2 < j; i$2 = i$2 + 4 | 0) { H32[off + i$2 >> 2 | 0] = buf[i$2] << 24 | buf[i$2 + 1] << 16 | buf[i$2 + 2] << 8 | buf[i$2 + 3]; } switch (lm) { case 3: H8[off + j + 1 | 0] = buf[j + 2]; case 2: H8[off + j + 2 | 0] = buf[j + 1]; case 1: H8[off + j + 3 | 0] = buf[j]; } }; var convFn = function (data) { switch (util.getDataType(data)) { case 'string': return convStr.bind(data); case 'array': return convBuf.bind(data); case 'buffer': return convBuf.bind(data); case 'arraybuffer': return convBuf.bind(new Uint8Array(data)); case 'view': return convBuf.bind(new Uint8Array(data.buffer, data.byteOffset, data.byteLength)); case 'blob': return convBlob.bind(data); } }; var slice = function (data, offset) { switch (util.getDataType(data)) { case 'string': return data.slice(offset); case 'array': return data.slice(offset); case 'buffer': return data.slice(offset); case 'arraybuffer': return data.slice(offset); case 'view': return data.buffer.slice(offset); } }; var // Precompute 00 - ff strings precomputedHex = new Array(256); for (var i = 0; i < 256; i++) { precomputedHex[i] = (i < 16 ? '0' : '') + i.toString(16); } var // Convert an ArrayBuffer into its hexadecimal string representation. hex = function (arrayBuffer) { var binarray = new Uint8Array(arrayBuffer); var res = new Array(arrayBuffer.byteLength); for (var i$2 = 0; i$2 < res.length; i$2++) { res[i$2] = precomputedHex[binarray[i$2]]; } return res.join(''); }; var ceilHeapSize = function (v) { // The asm.js spec says: // The heap object's byteLength must be either // 2^n for n in [12, 24) or 2^24 * n for n ≥ 1. // Also, byteLengths smaller than 2^16 are deprecated. var p; if (// If v is smaller than 2^16, the smallest possible solution // is 2^16. v <= 65536) return 65536; if (// If v < 2^24, we round up to 2^n, // otherwise we round up to 2^24 * n. v < 16777216) { for (p = 1; p < v; p = p << 1); } else { for (p = 16777216; p < v; p += 16777216); } return p; }; var // Initialize the internal data structures to a new capacity. init = function (size) { if (size % 64 > 0) { throw new Error('Chunk size must be a multiple of 128 bit'); } self$2.offset = 0; self$2.maxChunkLen = size; self$2.padMaxChunkLen = padlen(size); // The size of the heap is the sum of: // 1. The padded input message size // 2. The extended space the algorithm needs (320 byte) // 3. The 160 bit state the algoritm uses self$2.heap = new ArrayBuffer(ceilHeapSize(self$2.padMaxChunkLen + 320 + 20)); self$2.h32 = new Int32Array(self$2.heap); self$2.h8 = new Int8Array(self$2.heap); self$2.core = new Rusha._core({ Int32Array: Int32Array, DataView: DataView }, {}, self$2.heap); self$2.buffer = null; }; // Iinitializethe datastructures according // to a chunk siyze. init(chunkSize || 64 * 1024); var initState = function (heap, padMsgLen) { self$2.offset = 0; var io = new Int32Array(heap, padMsgLen + 320, 5); io[0] = 1732584193; io[1] = -271733879; io[2] = -1732584194; io[3] = 271733878; io[4] = -1009589776; }; var padChunk = function (chunkLen, msgLen) { var padChunkLen = padlen(chunkLen); var view = new Int32Array(self$2.heap, 0, padChunkLen >> 2); padZeroes(view, chunkLen); padData(view, chunkLen, msgLen); return padChunkLen; }; var // Write data to the heap. write = function (data, chunkOffset, chunkLen, off) { convFn(data)(self$2.h8, self$2.h32, chunkOffset, chunkLen, off || 0); }; var // Initialize and call the RushaCore, // assuming an input buffer of length len * 4. coreCall = function (data, chunkOffset, chunkLen, msgLen, finalize) { var padChunkLen = chunkLen; write(data, chunkOffset, chunkLen); if (finalize) { padChunkLen = padChunk(chunkLen, msgLen); } self$2.core.hash(padChunkLen, self$2.padMaxChunkLen); }; var getRawDigest = function (heap, padMaxChunkLen) { var io = new Int32Array(heap, padMaxChunkLen + 320, 5); var out = new Int32Array(5); var arr = new DataView(out.buffer); arr.setInt32(0, io[0], false); arr.setInt32(4, io[1], false); arr.setInt32(8, io[2], false); arr.setInt32(12, io[3], false); arr.setInt32(16, io[4], false); return out; }; var // Calculate the hash digest as an array of 5 32bit integers. rawDigest = this.rawDigest = function (str) { var msgLen = str.byteLength || str.length || str.size || 0; initState(self$2.heap, self$2.padMaxChunkLen); var chunkOffset = 0, chunkLen = self$2.maxChunkLen, last; for (chunkOffset = 0; msgLen > chunkOffset + chunkLen; chunkOffset += chunkLen) { coreCall(str, chunkOffset, chunkLen, msgLen, false); } coreCall(str, chunkOffset, msgLen - chunkOffset, msgLen, true); return getRawDigest(self$2.heap, self$2.padMaxChunkLen); }; // The digest and digestFrom* interface returns the hash digest // as a hex string. this.digest = this.digestFromString = this.digestFromBuffer = this.digestFromArrayBuffer = function (str) { return hex(rawDigest(str).buffer); }; this.resetState = function () { initState(self$2.heap, self$2.padMaxChunkLen); return this; }; this.append = function (chunk) { var chunkOffset = 0; var chunkLen = chunk.byteLength || chunk.length || chunk.size || 0; var turnOffset = self$2.offset % self$2.maxChunkLen; var inputLen; self$2.offset += chunkLen; while (chunkOffset < chunkLen) { inputLen = Math.min(chunkLen - chunkOffset, self$2.maxChunkLen - turnOffset); write(chunk, chunkOffset, inputLen, turnOffset); turnOffset += inputLen; chunkOffset += inputLen; if (turnOffset === self$2.maxChunkLen) { self$2.core.hash(self$2.maxChunkLen, self$2.padMaxChunkLen); turnOffset = 0; } } return this; }; this.getState = function () { var turnOffset = self$2.offset % self$2.maxChunkLen; var heap; if (!turnOffset) { var io = new Int32Array(self$2.heap, self$2.padMaxChunkLen + 320, 5); heap = io.buffer.slice(io.byteOffset, io.byteOffset + io.byteLength); } else { heap = self$2.heap.slice(0); } return { offset: self$2.offset, heap: heap }; }; this.setState = function (state) { self$2.offset = state.offset; if (state.heap.byteLength === 20) { var io = new Int32Array(self$2.heap, self$2.padMaxChunkLen + 320, 5); io.set(new Int32Array(state.heap)); } else { self$2.h32.set(new Int32Array(state.heap)); } return this; }; var rawEnd = this.rawEnd = function () { var msgLen = self$2.offset; var chunkLen = msgLen % self$2.maxChunkLen; var padChunkLen = padChunk(chunkLen, msgLen); self$2.core.hash(padChunkLen, self$2.padMaxChunkLen); var result = getRawDigest(self$2.heap, self$2.padMaxChunkLen); initState(self$2.heap, self$2.padMaxChunkLen); return result; }; this.end = function () { return hex(rawEnd().buffer); }; } ; // The low-level RushCore module provides the heart of Rusha, // a high-speed sha1 implementation working on an Int32Array heap. // At first glance, the implementation seems complicated, however // with the SHA1 spec at hand, it is obvious this almost a textbook // implementation that has a few functions hand-inlined and a few loops // hand-unrolled. Rusha._core = function RushaCore(stdlib, foreign, heap) { 'use asm'; var H = new stdlib.Int32Array(heap); function hash(k, x) { // k in bytes k = k | 0; x = x | 0; var i = 0, j = 0, y0 = 0, z0 = 0, y1 = 0, z1 = 0, y2 = 0, z2 = 0, y3 = 0, z3 = 0, y4 = 0, z4 = 0, t0 = 0, t1 = 0; y0 = H[x + 320 >> 2] | 0; y1 = H[x + 324 >> 2] | 0; y2 = H[x + 328 >> 2] | 0; y3 = H[x + 332 >> 2] | 0; y4 = H[x + 336 >> 2] | 0; for (i = 0; (i | 0) < (k | 0); i = i + 64 | 0) { z0 = y0; z1 = y1; z2 = y2; z3 = y3; z4 = y4; for (j = 0; (j | 0) < 64; j = j + 4 | 0) { t1 = H[i + j >> 2] | 0; t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0; y4 = y3; y3 = y2; y2 = y1 << 30 | y1 >>> 2; y1 = y0; y0 = t0; H[k + j >> 2] = t1; } for (j = k + 64 | 0; (j | 0) < (k + 80 | 0); j = j + 4 | 0) { t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0; y4 = y3; y3 = y2; y2 = y1 << 30 | y1 >>> 2; y1 = y0; y0 = t0; H[j >> 2] = t1; } for (j = k + 80 | 0; (j | 0) < (k + 160 | 0); j = j + 4 | 0) { t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) + 1859775393 | 0) | 0; y4 = y3; y3 = y2; y2 = y1 << 30 | y1 >>> 2; y1 = y0; y0 = t0; H[j >> 2] = t1; } for (j = k + 160 | 0; (j | 0) < (k + 240 | 0); j = j + 4 | 0) { t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | y1 & y3 | y2 & y3) | 0) + ((t1 + y4 | 0) - 1894007588 | 0) | 0; y4 = y3; y3 = y2; y2 = y1 << 30 | y1 >>> 2; y1 = y0; y0 = t0; H[j >> 2] = t1; } for (j = k + 240 | 0; (j | 0) < (k + 320 | 0); j = j + 4 | 0) { t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31; t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) - 899497514 | 0) | 0; y4 = y3; y3 = y2; y2 = y1 << 30 | y1 >>> 2; y1 = y0; y0 = t0; H[j >> 2] = t1; } y0 = y0 + z0 | 0; y1 = y1 + z1 | 0; y2 = y2 + z2 | 0; y3 = y3 + z3 | 0; y4 = y4 + z4 | 0; } H[x + 320 >> 2] = y0; H[x + 324 >> 2] = y1; H[x + 328 >> 2] = y2; H[x + 332 >> 2] = y3; H[x + 336 >> 2] = y4; } return { hash: hash }; }; if (// If we'e running in Node.JS, export a module. typeof module !== 'undefined') { module.exports = Rusha; } else if (// If we're running in a DOM context, export // the Rusha object to toplevel. typeof window !== 'undefined') { window.Rusha = Rusha; } if (// If we're running in a webworker, accept // messages containing a jobid and a buffer // or blob object, and return the hash result. typeof FileReaderSync !== 'undefined') { var reader = new FileReaderSync(), hasher = new Rusha(4 * 1024 * 1024); self.onmessage = function onMessage(event) { var hash, data = event.data.data; try { hash = hasher.digest(data); self.postMessage({ id: event.data.id, hash: hash }); } catch (e) { self.postMessage({ id: event.data.id, error: e.name }); } }; } }());