""" ////////////////////////////////////////////////////////////////////////////////////////////// // Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack) // version 1.1 // by Leemon Baird, 2011, Leemon@Leemon.com //http://www.thingiverse.com/thing:5505 // // This file is public domain. Use it for any purpose, including commercial // applications. Attribution would be nice, but is not required. There is // no warranty of any kind, including its correctness, usefulness, or safety. // // This is parameterized involute spur (or helical) gear. It is much simpler and less powerful than // others on Thingiverse. But it is public domain. I implemented it from scratch from the // descriptions and equations on Wikipedia and the web, using Mathematica for calculations and testing, // and I now release it into the public domain. // // http://en.wikipedia.org/wiki/Involute_gear // http://en.wikipedia.org/wiki/Gear // http://en.wikipedia.org/wiki/List_of_gear_nomenclature // http://gtrebaol.free.fr/doc/catia/spur_gear.html // http://www.cs.cmu.edu/~rapidproto/mechanisms/chpt7.html // // The module gear() gives an involute spur gear, with reasonable defaults for all the parameters. // Normally, you should just choose the first 4 parameters, and let the rest be default values. // The module gear() gives a gear in the XY plane, centered on the origin, with one tooth centered on // the positive Y axis. The various functions below it take the same parameters, and return various // measurements for the gear. The most important is pitch_radius, which tells how far apart to space // gears that are meshing, and adendum_radius, which gives the size of the region filled by the gear. // A gear has a "pitch circle", which is an invisible circle that cuts through the middle of each // tooth (though not the exact center). In order for two gears to mesh, their pitch circles should // just touch. So the distance between their centers should be pitch_radius() for one, plus pitch_radius() // for the other, which gives the radii of their pitch circles. // // In order for two gears to mesh, they must have the same mm_per_tooth and pressure_angle parameters. // mm_per_tooth gives the number of millimeters of arc around the pitch circle covered by one tooth and one // space between teeth. The pitch angle controls how flat or bulged the sides of the teeth are. Common // values include 14.5 degrees and 20 degrees, and occasionally 25. Though I've seen 28 recommended for // plastic gears. Larger numbers bulge out more, giving stronger teeth, so 28 degrees is the default here. // // The ratio of number_of_teeth for two meshing gears gives how many times one will make a full // revolution when the the other makes one full revolution. If the two numbers are coprime (i.e. // are not both divisible by the same number greater than 1), then every tooth on one gear // will meet every tooth on the other, for more even wear. So coprime numbers of teeth are good. // // The module rack() gives a rack, which is a bar with teeth. A rack can mesh with any // gear that has the same mm_per_tooth and pressure_angle. // // Some terminology: // The outline of a gear is a smooth circle (the "pitch circle") which has mountains and valleys // added so it is toothed. So there is an inner circle (the "root circle") that touches the // base of all the teeth, an outer circle that touches the tips of all the teeth, // and the invisible pitch circle in between them. There is also a "base circle", which can be smaller than // all three of the others, which controls the shape of the teeth. The side of each tooth lies on the path // that the end of a string would follow if it were wrapped tightly around the base circle, then slowly unwound. // That shape is an "involute", which gives this type of gear its name. // ////////////////////////////////////////////////////////////////////////////////////////////// //An involute spur gear, with reasonable defaults for all the parameters. //Normally, you should just choose the first 4 parameters, and let the rest be default values. //Meshing gears must match in mm_per_tooth, pressure_angle, and twist, //and be separated by the sum of their pitch radii, which can be found with pitch_radius(). """ # ported to Blendercam by Alain Pelletier Jan 2022 import bpy from bpy.props import * from bpy.types import Operator from cam import utils, polygon_utils_cam, simple import shapely from shapely.geometry import Point, LineString, Polygon import mathutils import math # convert gear_polar to cartesian coordinates def gear_polar(r, theta): return r * math.sin(theta), r * math.cos(theta) # unwind a string this many degrees to go from radius r1 to radius r2 def gear_iang(r1, r2): return math.sqrt((r2 / r1) * (r2 / r1) - 1) - math.acos(r1 / r2) # radius a fraction f up the curved side of the tooth def gear_q7(f, r, b, r2, t, s): return gear_q6(b, s, t, (1-f) * max(b, r) + f * r2) # point at radius d on the involute curve def gear_q6(b, s, t, d): return gear_polar(d, s * (gear_iang(b, d) + t)) # mm_per_tooth = this is the "circular pitch", the circumference of the pitch circle divided by the number of teeth # number_of_teeth = total number of teeth around the entire perimeter # hole_diameter = diameter of the hole in the center, in mm # pressure_angle = Controls how straight or bulged the tooth sides are. In radians. # clearance = gap between top of a tooth on one gear and bottom of valley on a meshing gear( in millimeters) # backlash = gap between two meshing teeth, in the direction along the circumference of the pitch circle def gear(mm_per_tooth=0.003, number_of_teeth=5, hole_diameter=0.003175, pressure_angle=0.3488, clearance=0.0, backlash=0.0, rim_size=0.0005, hub_diameter=0.006, spokes=4): simple.deselect() pi = math.pi p = mm_per_tooth * number_of_teeth / pi / 2 # radius of pitch circle c = p + mm_per_tooth / pi - clearance # radius of outer circle b = p * math.cos(pressure_angle) # radius of base circle r = p-(c-p)-clearance # radius of root circle t = mm_per_tooth / 2 - backlash / 2 # tooth thickness at pitch circle k = - gear_iang(b, p) - t / 2 / p # angle to where involute meets base circle on each side of tooth shapely_gear = Polygon([ (0, 0), gear_polar(r, k if r < b else -pi / number_of_teeth), gear_q7(0, r, b, c, k, 1), gear_q7(0.1, r, b, c, k, 1), gear_q7(0.2, r, b, c, k, 1), gear_q7(0.3, r, b, c, k, 1), gear_q7(0.4, r, b, c, k, 1), gear_q7(0.5, r, b, c, k, 1), gear_q7(0.6, r, b, c, k, 1), gear_q7(0.7, r, b, c, k, 1), gear_q7(0.8, r, b, c, k, 1), gear_q7(0.9, r, b, c, k, 1), gear_q7(1.0, r, b, c, k, 1), gear_q7(1.0, r, b, c, k, -1), gear_q7(0.9, r, b, c, k, -1), gear_q7(0.8, r, b, c, k, -1), gear_q7(0.7, r, b, c, k, -1), gear_q7(0.6, r, b, c, k, -1), gear_q7(0.5, r, b, c, k, -1), gear_q7(0.4, r, b, c, k, -1), gear_q7(0.3, r, b, c, k, -1), gear_q7(0.2, r, b, c, k, -1), gear_q7(0.1, r, b, c, k, -1), gear_q7(0.0, r, b, c, k, -1), gear_polar(r, -k if r < b else pi / number_of_teeth) ]) utils.shapelyToCurve('tooth', shapely_gear, 0.0) i = number_of_teeth while i > 1: simple.duplicate() simple.rotate(2 * math.pi / number_of_teeth) i -= 1 simple.join_multiple('tooth') simple.active_name('_teeth') bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=r, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hub') simple.union('_') simple.active_name('_gear') simple.remove_doubles() if spokes > 0: bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=r-rim_size, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hole') simple.difference('_', '_gear') bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=hub_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hub') bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=hole_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hub_hole') simple.difference('_hub', '_hub') simple.join_multiple('_') simple.add_rectangle(r-rim_size-((hub_diameter-hole_diameter)/4 + hole_diameter/2), hub_diameter/2, center_x=False) simple.move(x=(hub_diameter-hole_diameter)/4 + hole_diameter/2) simple.active_name('_spoke') angle = 2 * pi / spokes while spokes > 0: simple.duplicate() simple.rotate(angle) spokes -= 1 simple.union('_spoke') simple.remove_doubles() simple.union('_') else: bpy.ops.curve.simple(align='WORLD', location=(0, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=hole_diameter, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hole') simple.difference('_', '_gear') name = 'gear-' + str(round(mm_per_tooth*1000, 1)) name += 'mm-pitch-' + str(number_of_teeth) name += 'teeth-PA-' + str(round(math.degrees(pressure_angle), 1)) simple.active_name(name) def rack(mm_per_tooth=0.01, number_of_teeth=11, height=0.012, pressure_angle=0.3488, backlash=0.0, hole_diameter=0.003175, tooth_per_hole=4): simple.deselect() pi = math.pi mm_per_tooth *= 1000 a = mm_per_tooth / pi # addendum t = (a * math.sin(pressure_angle)) # tooth side is tilted so top/bottom corners move this amount a /= 1000 mm_per_tooth /= 1000 t /= 1000 shapely_gear = Polygon([ (-mm_per_tooth * 2/4*1.001, a-height), (-mm_per_tooth * 2/4*1.001 - backlash, -a), (-mm_per_tooth * 1/4 + backlash - t, -a), (-mm_per_tooth * 1/4 + backlash + t, a), (mm_per_tooth * 1/4 - backlash - t, a), (mm_per_tooth * 1/4 - backlash + t, -a), (mm_per_tooth * 2/4*1.001 + backlash, -a), (mm_per_tooth * 2/4*1.001, a-height) ]) utils.shapelyToCurve('_tooth', shapely_gear, 0.0) i = number_of_teeth while i > 1: simple.duplicate(x=mm_per_tooth) i -= 1 simple.union('_tooth') simple.move(y=height/2) if hole_diameter > 0: bpy.ops.curve.simple(align='WORLD', location=(mm_per_tooth/2, 0, 0), rotation=(0, 0, 0), Simple_Type='Circle', Simple_radius=hole_diameter/2, shape='3D', use_cyclic_u=True, edit_mode=False) simple.active_name('_hole') distance = (number_of_teeth-1) * mm_per_tooth while distance > tooth_per_hole * mm_per_tooth: simple.duplicate(x=tooth_per_hole * mm_per_tooth) distance -= tooth_per_hole * mm_per_tooth simple.difference('_', '_tooth') name = 'rack-' + str(round(mm_per_tooth * 1000, 1)) name += '-PA-' + str(round(math.degrees(pressure_angle), 1)) simple.active_name(name)