blender-geometry-script/api/types.py

381 wiersze
14 KiB
Python

import bpy
from bpy.types import NodeSocketStandard
import nodeitems_utils
import enum
from .state import State
from .static.sample_mode import SampleMode
import geometry_script
INT_MAX = 2147483647
INT_MIN = -INT_MAX -1
class SubtypeInt(enum.Enum):
NONE = 'None'
PERCENTAGE = 'Percentage'
FACTOR = 'Factor'
class SubtypeFloat(enum.Enum):
NONE = 'None'
PERCENTAGE = 'Percentage'
FACTOR = 'Factor'
ANGLE = 'Angle'
TIME = 'Time (Scene Relative)'
TIME_ABSOLUTE = 'Time (Absolute)'
DISTANCE = 'Distance'
class InputOptions:
min_value: int | float
max_value: int | float
bl_subtype_label: str
name: str
description: str
hide_in_modifier: bool
def __init__(
self,
min: int | float | None = None,
max: int | float | None = None,
subtype: SubtypeInt | SubtypeFloat | None = None,
name: str | None = None,
tooltip: str = '',
hide_in_modifier: bool = False
):
self.min_value = min
self.max_value = max
self.bl_subtype_label = subtype.value if subtype != None else None
self.name = name
self.description = tooltip
self.hide_in_modifier = hide_in_modifier
def process(self, node_input_type: str):
if node_input_type == 'INT':
if self.min_value != None and self.max_value == None:
self.max_value = INT_MAX
if self.max_value != None and self.min_value == None:
self.min_value = INT_MIN
if isinstance(self.min_value, float):
self.min_value = int(self.min_value)
if isinstance(self.max_value, float):
self.max_value = int(self.max_value)
if self.bl_subtype_label == None:
self.bl_subtype_label = SubtypeInt.NONE
elif node_input_type == 'VALUE':
if self.min_value != None and self.max_value == None:
self.max_value = float('inf')
if self.max_value != None and self.min_value == None:
self.min_value = float('-inf')
if isinstance(self.min_value, int):
self.min_value = float(self.min_value)
if isinstance(self.max_value, int):
self.max_value = float(self.max_value)
if self.bl_subtype_label == None:
self.bl_subtype_label = SubtypeFloat.NONE
def map_case_name(i):
return ('_' if not i.identifier[0].isalpha() else '') + i.identifier.replace(' ', '_').upper()
def socket_type_to_data_type(socket_type):
match socket_type:
case 'VALUE':
return 'FLOAT'
case 'VECTOR':
return 'FLOAT_VECTOR'
case 'COLOR':
return 'FLOAT_COLOR'
case _:
return socket_type
def socket_class_to_data_type(socket_class_name):
match socket_class_name:
case 'NodeSocketGeometry':
return 'GEOMETRY'
case 'NodeSocketFloat':
return 'FLOAT'
case _:
return socket_class_name
# The base class all exposed socket types conform to.
class _TypeMeta(type):
def __getitem__(self, args):
input_options = None
if isinstance(args, int) or isinstance(args, float):
input_options = InputOptions(min=args)
elif isinstance(args, tuple):
tuple_args = {}
if isinstance(args[0], int) or isinstance(args[0], float):
tuple_args['min'] = args[0]
if len(args) > 1 and (isinstance(args[1], int) or isinstance(args[1], float)):
tuple_args['max'] = args[1]
if len(tuple_args) > 0:
input_options = InputOptions(**tuple_args)
elif isinstance(args, slice):
slice_args = {}
if isinstance(args.start, int) or isinstance(args.start, float):
slice_args['min'] = args.start
if isinstance(args.stop, int) or isinstance(args.stop, float):
slice_args['max'] = args.stop
if len(slice_args) > 0:
input_options = InputOptions(**slice_args)
elif isinstance(args, InputOptions):
input_options = args
if input_options != None:
setattr(self, 'input_options', input_options)
return self
class Type(metaclass=_TypeMeta):
socket_type: str
def __init__(self, socket: bpy.types.NodeSocket = None, value = None):
if value is not None:
input_nodes = {
int: ('FunctionNodeInputInt', 'integer'),
bool: ('FunctionNodeInputBool', 'boolean'),
str: ('FunctionNodeInputString', 'string'),
tuple: ('FunctionNodeInputVector', 'vector'),
float: ('ShaderNodeValue', None),
}
if type(value) == int:
print("Making an integer node?")
if not type(value) in input_nodes:
raise Exception(f"'{value}' cannot be expressed as a node.")
input_node_info = input_nodes[type(value)]
value_node = State.current_node_tree.nodes.new(input_node_info[0])
if input_node_info[1] is None:
value_node.outputs[0].default_value = value
else:
setattr(value_node, input_node_info[1], value)
socket = value_node.outputs[0]
self._socket = socket
self.socket_type = type(socket).__name__
def _math(self, other, operation, reverse=False):
if other is None:
vector_or_value = self
else:
vector_or_value = (other, self) if reverse else (self, other)
if self._socket.type == 'VECTOR':
return geometry_script.vector_math(operation=operation, vector=vector_or_value)
else:
return geometry_script.math(operation=operation, value=vector_or_value)
def __add__(self, other):
return self._math(other, 'ADD')
def __radd__(self, other):
return self._math(other, 'ADD', True)
def __sub__(self, other):
return self._math(other, 'SUBTRACT')
def __rsub__(self, other):
return self._math(other, 'SUBTRACT', True)
def __mul__(self, other):
return self._math(other, 'MULTIPLY')
def __rmul__(self, other):
return self._math(other, 'MULTIPLY', True)
def __truediv__(self, other):
return self._math(other, 'DIVIDE')
def __rtruediv__(self, other):
return self._math(other, 'DIVIDE', True)
def __mod__(self, other):
return self._math(other, 'MODULO')
def __rmod__(self, other):
return self._math(other, 'MODULO', True)
def __floordiv__(self, other):
return self._math(other, 'DIVIDE')._math(None,'FLOOR')
def __rfloordiv__(self, other):
return self._math(other, 'DIVIDE',True)._math(None,'FLOOR')
def __pow__(self, other):
return self._math(other, 'POWER')
def __rpow__(self, other):
return self._math(other, 'POWER', True)
def __matmul__(self, other):
return self._math(other, 'DOT_PRODUCT')
def __rmatmul__(self, other):
return self._math(other, 'DOT_PRODUCT', True)
def __abs__(self):
return self._math(None,'ABSOLUTE')
def __neg__(self):
return self._math(-1, 'MULTIPLY')
def __pos__(self):
return self
def __round__(self):
return self._math(None,'ROUND')
def _compare(self, other, operation):
return geometry_script.compare(operation=operation, a=self, b=other)
def __eq__(self, other):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(other, 'XNOR')
else:
return self._compare(other, 'EQUAL')
def __ne__(self, other):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(other, 'XOR')
else:
return self._compare(other, 'NOT_EQUAL')
def __lt__(self, other):
return self._compare(other, 'LESS_THAN')
def __le__(self, other):
return self._compare(other, 'LESS_EQUAL')
def __gt__(self, other):
return self._compare(other, 'GREATER_THAN')
def __ge__(self, other):
return self._compare(other, 'GREATER_EQUAL')
def _boolean_math(self, other, operation, reverse=False):
boolean_math_node = State.current_node_tree.nodes.new('FunctionNodeBooleanMath')
boolean_math_node.operation = operation
a = None
b = None
for node_input in boolean_math_node.inputs:
if not node_input.enabled:
continue
elif a is None:
a = node_input
else:
b = node_input
State.current_node_tree.links.new(self._socket, a)
if other is not None:
if issubclass(type(other), Type):
State.current_node_tree.links.new(other._socket, b)
else:
b.default_value = other
return Type(boolean_math_node.outputs[0])
def __and__(self, other):
return self._boolean_math(other, 'AND')
def __rand__(self, other):
return self._boolean_math(other, 'AND', reverse=True)
def __or__(self, other):
return self._boolean_math(other, 'OR')
def __ror__(self, other):
return self._boolean_math(other, 'OR', reverse=True)
def __invert__(self):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(None, 'NOT')
else:
return self._math((-1, -1, -1) if self._socket.type == 'VECTOR' else -1, 'MULTIPLY')
def _get_xyz_component(self, component):
if self._socket.type != 'VECTOR':
raise Exception("`x`, `y`, `z` properties are not available on non-Vector types.")
separate_node = State.current_node_tree.nodes.new('ShaderNodeSeparateXYZ')
State.current_node_tree.links.new(self._socket, separate_node.inputs[0])
return Type(separate_node.outputs[component])
@property
def x(self):
return self._get_xyz_component(0)
@property
def y(self):
return self._get_xyz_component(1)
@property
def z(self):
return self._get_xyz_component(2)
def capture(self, value, **kwargs):
data_type = socket_type_to_data_type(value._socket.type)
res = self.capture_attribute(data_type=data_type, value=value, **kwargs)
return res.geometry, res.attribute
def transfer(self, attribute, **kwargs):
data_type = socket_type_to_data_type(attribute._socket.type)
return self.transfer_attribute(data_type=data_type, attribute=attribute, **kwargs)
def __getitem__(self, subscript):
if self._socket.type == 'VECTOR' and isinstance(subscript, int):
return self._get_xyz_component(subscript)
if isinstance(subscript, tuple):
accessor = subscript[0]
args = subscript[1:]
else:
accessor = subscript
args = []
sample_mode = SampleMode.INDEX if len(args) < 1 else args[0]
domain = 'POINT' if len(args) < 2 else (args[1].value if isinstance(args[1], enum.Enum) else args[1])
sample_position = None
sampling_index = None
if isinstance(accessor, slice):
data_type = socket_type_to_data_type(accessor.start._socket.type)
value = accessor.start
match sample_mode:
case SampleMode.INDEX:
sampling_index = accessor.stop
case SampleMode.NEAREST_SURFACE:
sample_position = accessor.stop
case SampleMode.NEAREST:
sample_position = accessor.stop
if accessor.step is not None:
domain = accessor.step.value if isinstance(accessor.step, enum.Enum) else accessor.step
else:
data_type = socket_type_to_data_type(accessor._socket.type)
value = accessor
match sample_mode:
case SampleMode.INDEX:
return self.sample_index(
data_type=data_type,
domain=domain,
value=value,
index=sampling_index or geometry_script.index()
)
case SampleMode.NEAREST_SURFACE:
return self.sample_nearest_surface(
data_type=data_type,
value=value,
sample_position=sample_position or geometry_script.position()
)
case SampleMode.NEAREST:
return self.sample_index(
data_type=data_type,
value=value,
index=self.sample_nearest(domain=domain, sample_position=sample_position or geometry_script.position())
)
for standard_socket in list(filter(lambda x: 'NodeSocket' in x, dir(bpy.types))):
name = standard_socket.replace('NodeSocket', '')
if len(name) < 1:
continue
globals()[name] = type(name, (Type,), { 'socket_type': standard_socket, '__module__': Type.__module__ })
if name == 'Int':
class IntIterator:
def __init__(self, integer):
self.integer = integer
self.points = State.current_node_tree.nodes.new('GeometryNodePoints')
State.current_node_tree.links.new(self.integer._socket, self.points.inputs[0])
self.index = State.current_node_tree.nodes.new('GeometryNodeInputIndex')
self._did_iterate = False
def __next__(self):
if not self._did_iterate:
self._did_iterate = True
return Type(self.index.outputs[0]), Type(self.points.outputs[0])
else:
raise StopIteration()
globals()[name].__iter__ = lambda self: IntIterator(self)