blender-geometry-script/api/types.py

296 wiersze
11 KiB
Python

import bpy
from bpy.types import NodeSocketStandard
import nodeitems_utils
import enum
from .state import State
from .static.sample_mode import SampleMode
import geometry_script
def map_case_name(i):
return ('_' if not i.identifier[0].isalpha() else '') + i.identifier.replace(' ', '_').upper()
def socket_type_to_data_type(socket_type):
match socket_type:
case 'VALUE':
return 'FLOAT'
case 'VECTOR':
return 'FLOAT_VECTOR'
case 'COLOR':
return 'FLOAT_COLOR'
case _:
return socket_type
def socket_class_to_data_type(socket_class_name):
match socket_class_name:
case 'NodeSocketGeometry':
return 'GEOMETRY'
case 'NodeSocketFloat':
return 'FLOAT'
case _:
return socket_class_name
# The base class all exposed socket types conform to.
class _TypeMeta(type):
def __getitem__(self, args):
for s in filter(lambda x: isinstance(x, slice), args):
if (isinstance(s.start, float) or isinstance(s.start, int)) and (isinstance(s.stop, float) or isinstance(s.stop, int)):
print(f"minmax: ({s.start}, {s.stop})")
elif isinstance(s.start, str):
print(f"{s.start} = {s.stop}")
return self
class Type(metaclass=_TypeMeta):
socket_type: str
def __init__(self, socket: bpy.types.NodeSocket = None, value = None):
if value is not None:
input_nodes = {
int: ('FunctionNodeInputInt', 'integer'),
bool: ('FunctionNodeInputBool', 'boolean'),
str: ('FunctionNodeInputString', 'string'),
tuple: ('FunctionNodeInputVector', 'vector'),
float: ('ShaderNodeValue', None),
}
if type(value) == int:
print("Making an integer node?")
if not type(value) in input_nodes:
raise Exception(f"'{value}' cannot be expressed as a node.")
input_node_info = input_nodes[type(value)]
value_node = State.current_node_tree.nodes.new(input_node_info[0])
if input_node_info[1] is None:
value_node.outputs[0].default_value = value
else:
setattr(value_node, input_node_info[1], value)
socket = value_node.outputs[0]
self._socket = socket
self.socket_type = type(socket).__name__
def _math(self, other, operation, reverse=False):
if other is None:
vector_or_value = self
else:
vector_or_value = (other, self) if reverse else (self, other)
if self._socket.type == 'VECTOR':
return geometry_script.vector_math(operation=operation, vector=vector_or_value)
else:
return geometry_script.math(operation=operation, value=vector_or_value)
def __add__(self, other):
return self._math(other, 'ADD')
def __radd__(self, other):
return self._math(other, 'ADD', True)
def __sub__(self, other):
return self._math(other, 'SUBTRACT')
def __rsub__(self, other):
return self._math(other, 'SUBTRACT', True)
def __mul__(self, other):
return self._math(other, 'MULTIPLY')
def __rmul__(self, other):
return self._math(other, 'MULTIPLY', True)
def __truediv__(self, other):
return self._math(other, 'DIVIDE')
def __rtruediv__(self, other):
return self._math(other, 'DIVIDE', True)
def __mod__(self, other):
return self._math(other, 'MODULO')
def __rmod__(self, other):
return self._math(other, 'MODULO', True)
def __floordiv__(self, other):
return self._math(other, 'DIVIDE')._math(None,'FLOOR')
def __rfloordiv__(self, other):
return self._math(other, 'DIVIDE',True)._math(None,'FLOOR')
def __pow__(self, other):
return self._math(other, 'POWER')
def __rpow__(self, other):
return self._math(other, 'POWER', True)
def __matmul__(self, other):
return self._math(other, 'DOT_PRODUCT')
def __rmatmul__(self, other):
return self._math(other, 'DOT_PRODUCT', True)
def __abs__(self):
return self._math(None,'ABSOLUTE')
def __neg__(self):
return self._math(-1, 'MULTIPLY')
def __pos__(self):
return self
def __round__(self):
return self._math(None,'ROUND')
def _compare(self, other, operation):
return geometry_script.compare(operation=operation, a=self, b=other)
def __eq__(self, other):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(other, 'XNOR')
else:
return self._compare(other, 'EQUAL')
def __ne__(self, other):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(other, 'XOR')
else:
return self._compare(other, 'NOT_EQUAL')
def __lt__(self, other):
return self._compare(other, 'LESS_THAN')
def __le__(self, other):
return self._compare(other, 'LESS_EQUAL')
def __gt__(self, other):
return self._compare(other, 'GREATER_THAN')
def __ge__(self, other):
return self._compare(other, 'GREATER_EQUAL')
def _boolean_math(self, other, operation, reverse=False):
boolean_math_node = State.current_node_tree.nodes.new('FunctionNodeBooleanMath')
boolean_math_node.operation = operation
a = None
b = None
for node_input in boolean_math_node.inputs:
if not node_input.enabled:
continue
elif a is None:
a = node_input
else:
b = node_input
State.current_node_tree.links.new(self._socket, a)
if other is not None:
if issubclass(type(other), Type):
State.current_node_tree.links.new(other._socket, b)
else:
b.default_value = other
return Type(boolean_math_node.outputs[0])
def __and__(self, other):
return self._boolean_math(other, 'AND')
def __rand__(self, other):
return self._boolean_math(other, 'AND', reverse=True)
def __or__(self, other):
return self._boolean_math(other, 'OR')
def __ror__(self, other):
return self._boolean_math(other, 'OR', reverse=True)
def __invert__(self):
if self._socket.type == 'BOOLEAN':
return self._boolean_math(None, 'NOT')
else:
return self._math((-1, -1, -1) if self._socket.type == 'VECTOR' else -1, 'MULTIPLY')
def _get_xyz_component(self, component):
if self._socket.type != 'VECTOR':
raise Exception("`x`, `y`, `z` properties are not available on non-Vector types.")
separate_node = State.current_node_tree.nodes.new('ShaderNodeSeparateXYZ')
State.current_node_tree.links.new(self._socket, separate_node.inputs[0])
return Type(separate_node.outputs[component])
@property
def x(self):
return self._get_xyz_component(0)
@property
def y(self):
return self._get_xyz_component(1)
@property
def z(self):
return self._get_xyz_component(2)
def capture(self, value, **kwargs):
data_type = socket_type_to_data_type(value._socket.type)
res = self.capture_attribute(data_type=data_type, value=value, **kwargs)
return res.geometry, res.attribute
def transfer(self, attribute, **kwargs):
data_type = socket_type_to_data_type(attribute._socket.type)
return self.transfer_attribute(data_type=data_type, attribute=attribute, **kwargs)
def __getitem__(self, subscript):
if self._socket.type == 'VECTOR' and isinstance(subscript, int):
return self._get_xyz_component(subscript)
if isinstance(subscript, tuple):
accessor = subscript[0]
args = subscript[1:]
else:
accessor = subscript
args = []
sample_mode = SampleMode.INDEX if len(args) < 1 else args[0]
domain = 'POINT' if len(args) < 2 else (args[1].value if isinstance(args[1], enum.Enum) else args[1])
sample_position = None
sampling_index = None
if isinstance(accessor, slice):
data_type = socket_type_to_data_type(accessor.start._socket.type)
value = accessor.start
match sample_mode:
case SampleMode.INDEX:
sampling_index = accessor.stop
case SampleMode.NEAREST_SURFACE:
sample_position = accessor.stop
case SampleMode.NEAREST:
sample_position = accessor.stop
if accessor.step is not None:
domain = accessor.step.value if isinstance(accessor.step, enum.Enum) else accessor.step
else:
data_type = socket_type_to_data_type(accessor._socket.type)
value = accessor
match sample_mode:
case SampleMode.INDEX:
return self.sample_index(
data_type=data_type,
domain=domain,
value=value,
index=sampling_index or geometry_script.index()
)
case SampleMode.NEAREST_SURFACE:
return self.sample_nearest_surface(
data_type=data_type,
value=value,
sample_position=sample_position or geometry_script.position()
)
case SampleMode.NEAREST:
return self.sample_index(
data_type=data_type,
value=value,
index=self.sample_nearest(domain=domain, sample_position=sample_position or geometry_script.position())
)
for standard_socket in list(filter(lambda x: 'NodeSocket' in x, dir(bpy.types))):
name = standard_socket.replace('NodeSocket', '')
if len(name) < 1:
continue
globals()[name] = type(name, (Type,), { 'socket_type': standard_socket, '__module__': Type.__module__ })
if name == 'Int':
class IntIterator:
def __init__(self, integer):
self.integer = integer
self.points = State.current_node_tree.nodes.new('GeometryNodePoints')
State.current_node_tree.links.new(self.integer._socket, self.points.inputs[0])
self.index = State.current_node_tree.nodes.new('GeometryNodeInputIndex')
self._did_iterate = False
def __next__(self):
if not self._did_iterate:
self._did_iterate = True
return Type(self.index.outputs[0]), Type(self.points.outputs[0])
else:
raise StopIteration()
globals()[name].__iter__ = lambda self: IntIterator(self)