arduinoFFT/src/arduinoFFT.cpp

185 wiersze
5.0 KiB
C++

/*
FFT libray
Copyright (C) 2010 Didier Longueville
Copyright (C) 2014 Enrique Condes
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "arduinoFFT.h"
arduinoFFT::arduinoFFT(void)
{
/* Constructor */
}
arduinoFFT::~arduinoFFT(void)
{
/* Destructor */
}
uint8_t arduinoFFT::Revision(void)
{
return(FFT_LIB_REV);
}
void arduinoFFT::Compute(double *vReal, double *vImag, uint16_t samples, uint8_t dir)
{
Compute(vReal, vImag, samples, Exponent(samples), dir);
}
void arduinoFFT::Compute(double *vReal, double *vImag, uint16_t samples, uint8_t power, uint8_t dir)
{
/* Computes in-place complex-to-complex FFT */
/* Reverse bits */
uint16_t j = 0;
for (uint16_t i = 0; i < (samples - 1); i++) {
if (i < j) {
Swap(&vReal[i], &vReal[j]);
Swap(&vImag[i], &vImag[j]);
}
uint16_t k = (samples >> 1);
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
double c1 = -1.0;
double c2 = 0.0;
uint8_t l2 = 1;
for (uint8_t l = 0; (l < power); l++) {
uint8_t l1 = l2;
l2 <<= 1;
double u1 = 1.0;
double u2 = 0.0;
for (j = 0; j < l1; j++) {
for (uint16_t i = j; i < samples; i += l2) {
uint16_t i1 = i + l1;
double t1 = u1 * vReal[i1] - u2 * vImag[i1];
double t2 = u1 * vImag[i1] + u2 * vReal[i1];
vReal[i1] = vReal[i] - t1;
vImag[i1] = vImag[i] - t2;
vReal[i] += t1;
vImag[i] += t2;
}
double z = ((u1 * c1) - (u2 * c2));
u2 = ((u1 * c2) + (u2 * c1));
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == FFT_FORWARD) {
c2 = -c2;
}
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for reverse transform */
if (dir != FFT_FORWARD) {
for (uint16_t i = 0; i < samples; i++) {
vReal[i] /= samples;
vImag[i] /= samples;
}
}
}
void arduinoFFT::ComplexToMagnitude(double *vReal, double *vImag, uint16_t samples)
{
/* vM is half the size of vReal and vImag */
for (uint8_t i = 0; i < samples; i++) {
vReal[i] = sqrt(sq(vReal[i]) + sq(vImag[i]));
}
}
void arduinoFFT::Windowing(double *vData, uint16_t samples, uint8_t windowType, uint8_t dir)
{
/* Weighing factors are computed once before multiple use of FFT */
/* The weighing function is symetric; half the weighs are recorded */
double samplesMinusOne = (double(samples) - 1.0);
for (uint16_t i = 0; i < (samples >> 1); i++) {
double indexMinusOne = double(i);
double ratio = (indexMinusOne / samplesMinusOne);
double weighingFactor = 1.0;
/* Compute and record weighting factor */
switch (windowType) {
case FFT_WIN_TYP_RECTANGLE: /* rectangle (box car) */
weighingFactor = 1.0;
break;
case FFT_WIN_TYP_HAMMING: /* hamming */
weighingFactor = 0.54 - (0.46 * cos(twoPi * ratio));
break;
case FFT_WIN_TYP_HANN: /* hann */
weighingFactor = 0.54 * (1.0 - cos(twoPi * ratio));
break;
case FFT_WIN_TYP_TRIANGLE: /* triangle (Bartlett) */
weighingFactor = 1.0 - ((2.0 * abs(indexMinusOne - (samplesMinusOne / 2.0))) / samplesMinusOne);
break;
case FFT_WIN_TYP_BLACKMAN: /* blackmann */
weighingFactor = 0.42323 - (0.49755 * (cos(twoPi * ratio))) + (0.07922 * (cos(fourPi * ratio)));
break;
case FFT_WIN_TYP_FLT_TOP: /* flat top */
weighingFactor = 0.2810639 - (0.5208972 * cos(twoPi * ratio)) + (0.1980399 * cos(fourPi * ratio));
break;
case FFT_WIN_TYP_WELCH: /* welch */
weighingFactor = 1.0 - sq((indexMinusOne - samplesMinusOne / 2.0) / (samplesMinusOne / 2.0));
break;
}
if (dir == FFT_FORWARD) {
vData[i] *= weighingFactor;
vData[samples - (i + 1)] *= weighingFactor;
}
else {
vData[i] /= weighingFactor;
vData[samples - (i + 1)] /= weighingFactor;
}
}
}
double arduinoFFT::MajorPeak(double *vD, uint16_t samples, double samplingFrequency)
{
double maxY = 0;
uint16_t IndexOfMaxY = 0;
for (uint16_t i = 1; i < ((samples >> 1) - 1); i++) {
if ((vD[i-1] < vD[i]) && (vD[i] > vD[i+1])) {
if (vD[i] > maxY) {
maxY = vD[i];
IndexOfMaxY = i;
}
}
}
double delta = 0.5 * ((vD[IndexOfMaxY-1] - vD[IndexOfMaxY+1]) / (vD[IndexOfMaxY-1] - (2.0 * vD[IndexOfMaxY]) + vD[IndexOfMaxY+1]));
double interpolatedX = ((IndexOfMaxY + delta) * samplingFrequency) / (samples-1);
/* retuned value: interpolated frequency peak apex */
return(interpolatedX);
}
/* Private functions */
void arduinoFFT::Swap(double *x, double *y)
{
double temp = *x;
*x = *y;
*y = temp;
}
uint8_t arduinoFFT::Exponent(uint16_t value)
{
/* Calculates the base 2 logarithm of a value */
uint8_t result = 0;
while (((value >> result) & 1) != 1) result++;
return(result);
}