arduinoFFT/src/arduinoFFT.h

179 wiersze
6.2 KiB
C++

/*
FFT library
Copyright (C) 2010 Didier Longueville
Copyright (C) 2014 Enrique Condes
Copyright (C) 2020 Bim Overbohm (template, speed improvements)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ArduinoFFT_h /* Prevent loading library twice */
#define ArduinoFFT_h
#ifdef ARDUINO
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h" /* This is where the standard Arduino code lies */
#endif
#else
#include <stdio.h>
#include <stdlib.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/pgmspace.h>
#endif
#include "defs.h"
#include "types.h"
#include <math.h>
#include <stdint.h>
#endif
// This definition uses a low-precision square root approximation instead of the
// regular sqrt() call
// This might only work for specific use cases, but is significantly faster.
#ifndef FFT_SQRT_APPROXIMATION
#define sqrt_internal sqrt
#endif
enum class FFTDirection { Forward, Reverse };
enum class FFTWindow {
Rectangle, // rectangle (Box car)
Hamming, // hamming
Hann, // hann
Triangle, // triangle (Bartlett)
Nuttall, // nuttall
Blackman, // blackman
Blackman_Nuttall, // blackman nuttall
Blackman_Harris, // blackman harris
Flat_top, // flat top
Welch, // welch
Precompiled // Placeholder for using custom or precompiled window values
};
#define FFT_LIB_REV 0x20
/* Custom constants */
/* These defines keep compatibility with pre 2.0 code */
#define FFT_FORWARD FFTDirection::Forward
#define FFT_REVERSE FFTDirection::Reverse
/* Windowing type */
#define FFT_WIN_TYP_RECTANGLE FFTWindow::Rectangle /* rectangle (Box car) */
#define FFT_WIN_TYP_HAMMING FFTWindow::Hamming /* hamming */
#define FFT_WIN_TYP_HANN FFTWindow::Hann /* hann */
#define FFT_WIN_TYP_TRIANGLE FFTWindow::Triangle /* triangle (Bartlett) */
#define FFT_WIN_TYP_NUTTALL FFTWindow::Nuttall /* nuttall */
#define FFT_WIN_TYP_BLACKMAN FFTWindow::Blackman /* blackman */
#define FFT_WIN_TYP_BLACKMAN_NUTTALL \
FFTWindow::Blackman_Nuttall /* blackman nuttall */
#define FFT_WIN_TYP_BLACKMAN_HARRIS \
FFTWindow::Blackman_Harris /* blackman harris*/
#define FFT_WIN_TYP_FLT_TOP FFTWindow::Flat_top /* flat top */
#define FFT_WIN_TYP_WELCH FFTWindow::Welch /* welch */
/* End of compatibility defines */
/* Mathematial constants */
#define twoPi 6.28318531
#define fourPi 12.56637061
#define sixPi 18.84955593
template <typename T> class ArduinoFFT {
public:
ArduinoFFT();
ArduinoFFT(T *vReal, T *vImag, uint_fast16_t samples, T samplingFrequency,
bool windowingFactors = false);
~ArduinoFFT();
void complexToMagnitude(void) const;
void complexToMagnitude(T *vReal, T *vImag, uint_fast16_t samples) const;
void compute(FFTDirection dir) const;
void compute(T *vReal, T *vImag, uint_fast16_t samples,
FFTDirection dir) const;
void compute(T *vReal, T *vImag, uint_fast16_t samples, uint_fast8_t power,
FFTDirection dir) const;
void dcRemoval(void) const;
void dcRemoval(T *vData, uint_fast16_t samples) const;
T majorPeak(void) const;
void majorPeak(T *f, T *v) const;
T majorPeak(T *vData, uint_fast16_t samples, T samplingFrequency) const;
void majorPeak(T *vData, uint_fast16_t samples, T samplingFrequency,
T *frequency, T *magnitude) const;
T majorPeakParabola(void) const;
void majorPeakParabola(T *frequency, T *magnitude) const;
T majorPeakParabola(T *vData, uint_fast16_t samples,
T samplingFrequency) const;
void majorPeakParabola(T *vData, uint_fast16_t samples, T samplingFrequency,
T *frequency, T *magnitude) const;
uint8_t revision(void);
void setArrays(T *vReal, T *vImag, uint_fast16_t samples = 0);
void windowing(FFTWindow windowType, FFTDirection dir,
bool withCompensation = false);
void windowing(T *vData, uint_fast16_t samples, FFTWindow windowType,
FFTDirection dir, T *windowingFactors = nullptr,
bool withCompensation = false);
private:
/* Variables */
static const T _WindowCompensationFactors[10];
#ifdef FFT_SPEED_OVER_PRECISION
T _oneOverSamples = 0.0;
#endif
bool _isPrecompiled = false;
bool _precompiledWithCompensation = false;
uint_fast8_t _power = 0;
T *_precompiledWindowingFactors;
uint_fast16_t _samples;
T _samplingFrequency;
T *_vImag;
T *_vReal;
FFTWindow _windowFunction;
/* Functions */
uint_fast8_t exponent(uint_fast16_t value) const;
void findMaxY(T *vData, uint_fast16_t length, T *maxY,
uint_fast16_t *index) const;
void parabola(T x1, T y1, T x2, T y2, T x3, T y3, T *a, T *b, T *c) const;
void swap(T *a, T *b) const;
#ifdef FFT_SQRT_APPROXIMATION
float sqrt_internal(float x) const;
double sqrt_internal(double x) const;
#endif
};
#if defined(__AVR__) && defined(USE_AVR_PROGMEM)
static const float _c1[] PROGMEM = {
0.0000000000, 0.7071067812, 0.9238795325, 0.9807852804, 0.9951847267,
0.9987954562, 0.9996988187, 0.9999247018, 0.9999811753, 0.9999952938,
0.9999988235, 0.9999997059, 0.9999999265, 0.9999999816, 0.9999999954,
0.9999999989, 0.9999999997};
static const float _c2[] PROGMEM = {
1.0000000000, 0.7071067812, 0.3826834324, 0.1950903220, 0.0980171403,
0.0490676743, 0.0245412285, 0.0122715383, 0.0061358846, 0.0030679568,
0.0015339802, 0.0007669903, 0.0003834952, 0.0001917476, 0.0000958738,
0.0000479369, 0.0000239684};
#endif
#endif